• Title/Summary/Keyword: pulverized

Search Result 417, Processing Time 0.033 seconds

Combustion Kinetics of Pulverized Indian Coal-Char in Different CO2-O2 Mixture Isothermally (여러 CO2-O2 혼합기체에서 인도산 분말숯의 등온 연소반응)

  • Saravanan, V.;Shivakumar, R.;babu, P. Niruguna;Ramakrishna
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.635-639
    • /
    • 2009
  • Experimental work was carried out to study the combustion kinetics of the Indian coal-char in the varying mixture of carbon dioxide-oxygen ($CO_2-O_2$). The coal sample was pulverized and sieved to less than 58 microns and charred using volatile furnace by passing the nitrogen gas. The experiments were carried out using the Thermo Gravimetric Analyzer (TGA-50) at CPRI, Bangalore, different proportions of ($CO_2-O_2$) gas was allowed in to the TGA-50 (80-20, 60-40, 40-60, 20-80) mole basis were used to study the combustion kinetics of coal Isothermally, kinetic parameters like Activation energy (E) and the pre-exponential factors (A) are calculated using the unification approach and modified Arrhenius equation.

Experimental Study on Particle Temperature and CO/CO2 Emission Characteristics of Pulverized Coal Combustion Condition According to Coal Types in Blast Furnace (고로 내 미분탄 연소조건에서 탄종에 따른 입자온도와 CO/CO2 배출 특성에 관한 연구)

  • Cho, Young Jae;Kim, Jin Ho;Kim, Ryang Gyun;Kim, Gyu Bo;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.807-815
    • /
    • 2014
  • This study was performed using a laminar flow reactor that could replicate the combustion environment of pulverized coal in a blast furnace. Since a pulverized coal injection system was developed for iron making, the combustion characteristics of pulverized coal have been important in the iron and steel industry. The flame structure, particle temperature, and exhaust gas were investigated for different types of coal. The results of this study demonstrated that the combustion characteristics of coal are influenced by several properties of individual coals. In particular, the CO emission and volatile matter content of individual coals were found to have a strong influence on their combustion characteristics. Thus, this study found the properties of the coals to be significant and focused on the particle temperature and CO and $CO_2$ emissions.

A Study on the Mixing of Pulverization Matters when the Contrast Medium is connected to the Automatic Injection Device using the Syringe Connector (Syringe Connector를 이용하여 조영제를 자동 주입장치에 연결 시 분쇄물 혼입에 관한 연구)

  • Kim, Hyeon ju;Kim, Ji eun;Han, Yu bean;Choi, Seung hyun;Kang, Yun ki;Jung, Yu jin;Jung, Min young;Lee, Hoo min
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.777-783
    • /
    • 2018
  • The purpose of this study was to investigate the degree of tearing of the rubber when the spike of the syringe connector was connected to the bottle of the contrast medium composed of the rubber compound type and to investigate the presence of the synthetic rubber due to tearing and grinding and the size of the pulverized product when the pulverized matters rubber was detected. As a result, in the case of tearing degree, the front side of the first contact with the end of the syringe connector was torn more than the back side by about $3.14{\pm}0.04mm$, and the pulverized matters was detected on average 7 to 15 on the 10 contrast mediums. The average particle size was measured to be about $7.89{\pm}0.31{\mu}m$. In addition, it is necessary to develop a micro_filter type automatic injection system for blocking off the pulverized matters as well as additional experiments through various experiments and analysis methods, and it is considered that interest of related organizations will be needed in preparation of fatal accidents when pulverized matters is introduced.

A Study on Characteristics of Pulverized Ion Exchange Resins (이온교환수지 분체 특성에 대한 연구)

  • Jaeyong Huh;Gyeongmi Goo;Yongwon Jang;Sanghyeon Kang
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.132-139
    • /
    • 2024
  • The ion exchange resin used to remove total dissolved solids (TDS) is used by being packed in a column, and sufficient contact time between the ionic material and the ion exchange resin is required during the ion exchange process. In this study, the ion exchange resin that exhibits high TDS reduction even with a short contact time through pulverization of the ion exchange resin was characterized. The optimal size of resin considering flowability was over 100 ㎛. The highest pulverizing yield were obtained that 250~500 ㎛ size and 100~250 ㎛ size were 67.3% and 36.9%, respectively. Also, the highest yield and the pulverizing time of 100~500 ㎛ size was 87.1% and 2 minutes, respectively. Under batch test conditions, the time to reach a removal rate of 95% and 99% for 250~500 ㎛ resins was 1.82 and 1.96 times faster than non-pulverized ion exchange resin, respectively. The 100~250 ㎛ resins showed 15.9 times and 6.18 times faster, respectively. Under the column test, a total of 1.74 g of NaCl was removed by non-pulverized ion exchange resins, 1.83 g of NaCl was removed by 250~500 ㎛ resins and 1.63 g of NaCl was removed by 100 and 250 ㎛ resins. As the size of the resin decreased, the capacity slightly decreased. As a result, it was observed that the pulverized ion exchange resins could be a method of achieving high TDS removal performance under short contact time.

Extraction Characteristics of Saponin and Acidic Polysaccharide Based on the Red Ginseng Particle Size (홍삼의 입자크기에 따른 사포닌 및 산성다당체의 추출 특성)

  • Cho, Chang-Won;Kim, Sang-Wook;Rho, Jeong-Hae;Rhee, Young-Kyung;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • Effect of pulverization on total solid, crude saponin, and acidic polysaccharide contents of dried red ginseng main root were tested. Several particle size samples, including red ginseng main root (non pulverized), $10{\sim}40$ mesh powder, $40{\sim}100$ mesh powder, and >100 mesh powder were used in the extraction. The sequential solvent extraction method (1st: 70% EtOH at $70^{\circ}C$ for 12 hr, 2nd: 70% EtOH at $70^{\circ}C$ for 12 hr, 3rd: water at $70^{\circ}C$ for 12 hr) was applied to extract the saponins and acidic polysaccharide. Extraction yield of total solid of pulverized red ginseng ($10{\sim}40$ mesh size) was increased to 20% compared with that of non-pulverized. Especially, the crude saponin content of pulverized red ginseng ($10{\sim}40$ mesh size) showed an increase of 47% over non-pulverized. No difference in the component ratio was observed by pulverization, when the individual ginsenosides were quantified by HPLC. Also, extraction yield of acidic polysaccharide of pulverized red ginseng ($10{\sim}40$ mesh size) was increased 57% compared with that of non-pulverized. The results suggested that pulverization might be useful for increasing the extraction yield of red ginseng components.

Theoretical Study on the Characteristics of Pulverized Coal Combustor with 2 Stage Combustion (2단 연소방법에 의한 미분탄 연소기의 특성에 관한 이론적 연구)

  • Joo, Nahm-Roh;Choi, Sang-Il;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.103-112
    • /
    • 1997
  • In the combustion of the pulverized coal compared with that of liquid fuel or gaseous fuel, serious pollutants such as ash, $NO_x$ and $SO_x$ are released to surroundings. The objective of this study is the reduction of such pollutants in the combustion process. The modeling of cyclone combustor which uses the method of two stage combustion was carried out. The main burner length, scattering angle and air/fuel ratio were considered as parameters. The results show that the shorter the main burner length is, the less the amounts of coals which exit the combustor directly are, but the scattered input of coal is required anyway in order to collect all ashes. It is recommended that the shorter the main burner length is, the less the scattering angle is. And in the case of the scattered input compared with no scattering, the temperature in the combustor is more uniform and the amount of volatile is more reduced.

  • PDF

The Effects of Various Swirl Flows on Pulverized Petroleum Coke Combustion (미분 석유코크스연소기에서 스월강도변화가 연소과정에 미치는 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.297-299
    • /
    • 2014
  • Petroleum coke has high heating value and low price. Due to the steadily increasing demand for heavy oil processing, the production volume of petroleum coke tends to be expanded. The high availability and low price of petroleum coke have been strongly considered as candidate fuel for power generation facilities. However the high carbon content, high sulfur content and nitrogen content of petroleum fuel are known to produce relatively large quantity of CO2, high NOx and SO2 emission. In this work, a series of numerical simulations have been carried out in order to investigate the effects of swirl flow intensity on combustion furnace, which is most important operating condition. Results show that the temperature distribution was spatially uniform at about 1600K but high temperature region are located quite differently depending on swirl number. In addition, numerical temperature data was compared with experimental temperature data and its temperature difference shows less than 10%. On the other hand, discrepancy between numerical and experimental emission data were slightly large with necessities of improved emission model.

  • PDF

Performance of Low NOx Coal Burner in Industrial Coal Fired Boiler (산업용 보일러에 적용된 저 NOx 미분탄버너의 연소성능 평가)

  • Kim, Sang-Hyeun;Kim, Hyuk-Je;Kim, Hyeuk-Pill;Song, Si-Hong;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1751-1755
    • /
    • 2004
  • Increasing environmental pressures to reduce NOx emission are being placed on coal-fired boilers. To meet the environmental requirements, Doosan Heavy Industries & Construction Co., Ltd.(Doosan) has developed low NOx pulverized coal burner. Low NOx pulverized coal burner has already delivered, and it's combustion performance was evaluated to the NOx and Unburned Carbon(UBC) during the commissioning tests. The test results are shown that the strong relationship is existed between NOx and OFA flow rate, and also fuel-N fraction of coal has effected on NOx emission.

  • PDF

Effect of Coal Properties on Combustion Characteristics in a Pulverized Coal Fired Furnace (미분탄 연소로에서 연소특성에 미치는 석탄특성에 관한 연구)

  • Lee, Byoung-Hwa;Song, Ju-Hun;Lee, Cheon-Sung;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.737-747
    • /
    • 2009
  • This study is to investigate the effect of the moisture, volatile matter and particle size in the coal on the pulverized coal combustion characteristics using CFD. The results show that as the moisture content in coal increases, flame temperature decreases because of heat loss driven from latent heat of vaporization and reduction of heating value. As the volatile matter content in the coal increases, the temperature in the region near the burner increases, while the temperature in rear region of boiler decreases. The solution to keep the temperature in the rear region of boiler is suggested that particle size is needed to be larger. As the particle size increases, the temperature in the rear region of boiler show tendency to increase, for combustion burning time of coal could be extended.