• Title/Summary/Keyword: pulse width modulation (PWM)

Search Result 717, Processing Time 0.027 seconds

MM PWM Scheme for High Performance and Harmonic Effects Minimization of VSI-IM Drive System (VSI-IM 구동시스템의 고동작 및 고주파영향 최소화를 위한 MM PWM 방식)

  • Min Soo Kim
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 1988
  • MM(multimode) PWM(pulse width modulation) Suitable for high performance and harmonic effects minimization of VSI (voltabge source invertetr)-IM (induction motor)drive system is proposed. The approximated optimal, suboptimal and optimal PWM are implemented in the low frequency range, while square wave operation is realized in the hibh frequency range. The pulse width Modulator is capable of generating control signals to a transistorized inverter operating at about 1KHz. All functions except digital comparison have been implemented in softyware making the scheme economical, flexible and reliable. Pulse width modulator is built and tested experimentally. In order to confirm the effectiveness and the reliability of the theoretical proposition, this scheme is applied to 1Hp, Three phase IM. As results, it is concluded that the scheme of MM PWM is superior to other conventional switching scheme through the discussions or analysis carried out on the items such as line-to-line voltage, current and spectrum of current harmonic components observed at the output terminal of inverter, noise level of motor.

  • PDF

Four Novel PWM Shoot-Through Control Methods for Impedance Source DC-DC Converters

  • Vinnikov, Dmitri;Roasto, Indrek;Liivik, Liisa;Blinov, Andrei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.299-308
    • /
    • 2015
  • This study proposes four novel pulse width modulation (PWM) shoot-through control methods for impedance source (IS) galvanically isolated DC-DC converters. These methods are derived from a PWM control method with shifted shoot-through introduced by the authors in 2012. In contrast to the baseline solution, where the shoot-through states are generated by the simultaneous conduction of all transistors in the inverter bridge, our new approach is based on the shoot-through generation by one inverter leg. The idea is to increase the number of soft-switched transients and, therefore, decrease the dynamic losses of the front-end inverter. All the proposed approaches are experimentally verified through an insulated-gate bipolar transistor-based IS DC-DC converter. Conclusions are drawn in accordance with the results of the switching loss analysis.

An Efficiency-Optimized Modulation Strategy for Dual-Active-Bridge DC-DC Converters Using Dual-Pulse-Width-Modulation in the Low Power Region

  • Byen, Byeng-Joo;Ban, Chung-Hwan;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1413-1421
    • /
    • 2017
  • In order to control the output voltage in a dual active bridge converter, this paper establishes a theoretical inductor current equation for a dual-pulse-width-modulation scheme that ensures low switching loss. It also proposes a modulation strategy that minimizes conduction loss. When compared to the conventional single-pulse-width-modulation strategy, the proposed approach can reduce the inductor current RMS and improve efficiency in the low power region, as verified through simulation and experimental results.

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk;Yang, SongHee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.604-614
    • /
    • 2018
  • This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

Transfer Characteristics of the Zero- VoltageTransition Pulse-Width - Modulation Boost Converter (Zero-Voltage-Transition Pulse-Width-Modulation Boost 컨버터의 전달 특성)

  • 김진성;박석하;김양모
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.148-156
    • /
    • 1996
  • Increasing the switching frquency is essential to achieve the high density of switched mode power supplies, but this leads to the increase of switching losses. A number of new soft switching converters have been presented ot reduce switching losses, but most of them may have some demerits, such as the increase of voltage/current stresses and high conduction losses. To overcome these problems, the ZVT-PWM converter has recently been presented. in this paper, the operation characteristics of the ZVT-PWM boost converter is analyzed, and the steady-states (DC) and small-signal model of this converter are derived and analyzed, and then the transfer functions of this converter are derived. The transfer functions of ZVT-PWM boost converter are similar to those of the conventional PWM boost converter, but the transfer characteristics are affecsted by te duty ratio and the switching frequency.

  • PDF

Current Control for an AFE Rectifier Using Space Vector PWM (공간벡터변조방식에 의한 AFE정류기의 전류제어)

  • Jeon, Cheol-Hwan;Hur, Jae-Jung;Yoon, Kyoung-Kuk;Yoo, Heui-Han;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.498-503
    • /
    • 2019
  • Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

Investigations of Multi-Carrier Pulse Width Modulation Schemes for Diode Free Neutral Point Clamped Multilevel Inverters

  • Chokkalingam, Bharatiraja;Bhaskar, Mahajan Sagar;Padmanaban, Sanjeevikumar;Ramachandaramurthy, Vigna K.;Iqbal, Atif
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.702-713
    • /
    • 2019
  • Multilevel Inverters (MLIs) are widely used in medium voltage applications due to their various advantages. In addition, there are numerous types of MLIs for such applications. However, the diode-less 3-level (3L) T-type Neutral Point Clamped (NPC) MLI is the most advantageous due to its low conduction losses and high potential efficiency. The power circuit of a 3L T-type NPC is derived by the conventional two level inverter by a slight modification. In order to explore the MLI performance for various Pulse Width Modulation (PWM) schemes, this paper examines the operation of a 3L (five level line to line) T-type NPC MLI for various types of Multi-Carriers Pulse Width Modulation (MCPWM) schemes. These PWM schemes are compared in terms of their voltage profile, total harmonic distortion (THD) and conduction losses. In addition, a 3L T-type NPC MLI is also compared with the conventional NPC in terms of number of switches, clamping diodes, main diodes and capacitors. Moreover, the capacitor-balancing problem is also investigated using the Neutral Point Fluctuation (NPF) method with all of the MCPWM schemes. A 1kW 3L T-type NPC MLI is simulated in MATLAB/Simulink and implemented experimentally and its performance is tested with a 1HP induction motor. The results indicate that the 3L T-type NPC MLI has better performance than conventional NPC MLIs.

Noise Harmonic Reduction of IPMSM Based Next Generation High Speed Railway System using RCF-PWM (RCF-PWM을 이용한 IPMSM 기반 차세대 고속철도 구동 인버터 시스템의 소음원 고조파 저감)

  • Kim, Sung-Je;Jin, Kang-Hwan;Lee, Sang-Hyun;Kim, Yoon-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.244-250
    • /
    • 2012
  • In this paper, The next Generation High Speed Railway Inverter system using RCF-PWM(Random Carrier Frequency Pulse Width Modulation) was developed to reduce electromagnetic noise. RCF-PWM method is randomized the switching frequency in the range between Semiconductor switching devices' maximum switching frequency and minimum switching frequency, Simulation program has been built using MATLAB/Simulink to verify the validity of study. Finally, the simulation results of Next Generation High Speed Railway inverter system using the RCF method was compared with the conventional SVPWM method.

A New Temperature Control System by PWM Control Method for Thermal Massage System (PWM 제어방식에 의한 온열치료기의 새로운 온도제어 시스템)

  • Song, Myoung-Gyu;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.409-419
    • /
    • 2014
  • This paper proposes a new temperature control algorithm and system configuration of the pTMS(personal Thermal Massage System). By controlling the pulse width of the PWM(Pulse Width Modulation), the temparature of the heating lamp can be controlled stably, which is indispensable to the massage function. This technology is also adapted to the 'thermal massage', 'thermal acupressure', 'thermal moxibustion' functions of medical equipments. The temperature could be set at between $40^{\circ}C{\sim}70^{\circ}C$ by increments of $5^{\circ}C$, the control could be made in real time by increments of $1^{\circ}C$, and the temperature is displayed on the monitor by triggering every 2 seconds. when the present temperature is equal to the preset temperature, the PWM signal is minimized, and when the present temperature is higher than the preset temperature, overheating is prevented by interrupting the PWM output signal. When the difference of temperature exceeds $4^{\circ}C$, the PWM control is maximized in order for the system to reach the target temperature within a short period of time.

Pulse-Width Modulation Strategy for Common Mode Voltage Elimination with Reduced Common Mode Voltage Spikes in Multilevel Inverters with Extension to Over-Modulation Mode

  • Pham, Khoa-Dang;Nguyen, Nho-Van
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.727-743
    • /
    • 2019
  • This paper presents a pulse-width modulation strategy to eliminate the common mode voltage (CMV) with reduced CMV spikes in multilevel inverters since a high CMV magnitude and its fast variations dv/dt result in bearing failure of motors, overvoltage at motor terminals, and electromagnetic interference (EMI). The proposed method only utilizes the zero CMV states in a space vector diagram and it is implemented by a carrier-based pulse-width modulation (CBPWM) method. This method is generalized for odd number levels of inverters including neutral-point-clamped (NPC) and cascaded H-bridge inverters. Then it is extended to the over-modulation mode. The over-modulation mode is implemented by using the two-limit trajectory principle to maintain linear control and to avoid look-up tables. Even though the CMV is eliminated, CMV spikes that can cause EMI and bearing current problems still exist due to the deadtime effect. As a result, the deadtime effect is analyzed. By taking the deadtime effect into consideration, the proposed method is capable of reducing CMV spikes. Simulation and experimental results verify the effectiveness of the proposed strategy.