• Title/Summary/Keyword: pulse width modulated inverters

Search Result 14, Processing Time 0.03 seconds

A design of hybrid PWM inverter using microprocessor (마이크로프로세서를 이용한 하이브리드 PWM 인버터의 설계)

  • 노창주;임재문;박중순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • In an effort to conserve electric power, variable voltage variable frequency pulse width modulated (PWM) inverters are being applied increasingly to the variable speed control of the induction motors. The use of the PWM technique in motor drive applications is considered advantageous in many ways. For industrial applications, the PWM drive obtains its DC input through simple uncontrolled rectification of the commercial AC line and is favored for its good power factor, good efficiency, its relative freedom regulation problem, and mainly for its ability to operate the motor with nearly sinusoidal current waveforms. The purpose of this paper is to design a three phase natural sampled PWM inverter using microprocessor with simple control algorithm and hybrid control circuit has been built to implement this PWM scheme. In this system, the microprocessor can be used only for calculations directly related to motor control tasks by the design of hybrid circuit which sends PWM signals to the motor.

  • PDF

A Real Time Generation Technique of Fully Digitalized PWM Wave and Its Realization by Single Chip Microprocessor (전 디지털화된 PWM파의 실시간 탄생 기법 및 단일칩 마이크로프로세서에 의한 실현)

  • Jeon, Bong-Hwan;Jeong, Seok-Kwon;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.303-307
    • /
    • 1995
  • The pulse width modulated inverters based on fully digitalized method are becoming an industrial standard. This paper describes a real time generation of fully digitalized PWM pulses and its realization by single chip microprocessor. To verify the effectiveness of the proposed technique, the algorithm is implemented by using single chip microprocessor, 8097BH. The proposed method is compared with the well known triangular comparison method through experimental results, and the speed control of a motor is experimentally done by voltage-to-frequency constant control based on the proposed PWM generation method.

  • PDF

Evaluation of Winding Insulation of IGBT PWM Inverter-Fed Low-Voltage Induction Motors

  • Park Doh-Young;Hwang Don-Ha;Kim Yong-Joo;Kang Do-Hyun;Lee Young-Hoon;Kim Dong-Hee;Lee In-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.470-474
    • /
    • 2001
  • IGBT inverters have switching rise times of 0.2-2 $\mu$ sec, and have been believed to cause insulation stresses and premature motor failures. Inverter driven induction motors with high speed switching and advanced PWM techniques are widely used for variable speed applications. Recently, the insulation failures of stator winding have attracted many concerns due to high dv/dt of IGBT PWM inverter output. In this paper, the detailed insulation test results of 19 low-voltage induction motors are presented. Different types of insulation techniques are applied to 19 motors. The insulation characteristics are analyzed with partial discharge, discharge inception voltage, and dissipation factor tests. Also, breakdown tests by high voltage pulses are performed, and the corresponding breakdown voltages are obtained.

  • PDF

An Active Cancellation Method for the Common Mode Current of the Three-Phase Induction Motor Drives (3상 유도전동기 구동장치의 동상모드 전류 능동 제거법)

  • Uzzaman, Tawfique;Kim, Unghoe;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.96-97
    • /
    • 2019
  • Pulse Width Modulation (PWM) is a widely adopted technique to drive the motor using the voltage source inverters. Since they generate high frequency Common Mode (CM) Voltage, a high shaft voltage in induction motor is induced which leads to parasitic capacitive currents causing adverse effects such as premature deterioration of ball bearings and high levels of electromagnetic emissions. This paper presents an Active Cancellation Circuit (ACC) which can significantly reduce the CM voltage hence the common mode current in the three phase induction motor drives. In the proposed method the CM voltage is detected by the capacitors and applied to the frame of the motor to cancel the CM voltage hence the CM current. Unlike the conventional methods the proposed method does not insert the transformer in between the inverter and motor, a high power rating three phase transformer is not required and no losses associated with it. In addition the proposed method is applicable to any kind of PWM motor drives regardless of their PWM methods. The effectiveness of the proposed method is proved by the experiments with a three phase induction motor (1.1kW 415V/60Hz) combined with a three phase voltage source inverter modulated by the Space Vector Modulation (SVM).

  • PDF