• Title/Summary/Keyword: pulse forming

Search Result 110, Processing Time 0.027 seconds

A Study of High Temperature Filtration Performance Test on Low Density Cylindrical Ceramic Filters (저밀도 원통형 세라믹 필터의 고온 여과 성능시험 연구)

  • 이동섭;홍민선;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.213-222
    • /
    • 2001
  • Cylindrical type ceramic filers, that is 60 O.D$\times$10t$\times$600L and 60 O.D$\times$10t$\times$1,000L were manufactured by vacuum forming processes using ceramic ray materials. For cylindrical type ceramic filters, porosity and bulk density were measured for, 80 to 90% and 0.3 to 0.4 g/㎤, respectively at uniform pore size of 41 to 45${\mu}{\textrm}{m}$. Bench scale candle filters (60$\psi$ $\times$10t$\times$600L) were tested using different dusts collected from many industries including chemical processing, glass processing and metal manufacturing pants. Collection efficiencies found out to range from 99.87% to 99.90%, while resistance coefficients from 1.1$\times$10(sup)11/$m^2$ to 1.7$\times$10(sup)11/$m^2$ . Full scale low density ceramic filters (60$\psi$ $\times$10t$\times$1,000L) were also tested at 1 atm, $600^{\circ}C$ to reveal the filtration efficiency, conditioning, and resistance coefficients using two different types of dust as chemical processing and metal refined processing. Darcys law resistance coefficients were measured to range 1.44$\times$10(sup)11/$m^2$ to 2.74$\times$10(sup)11/$m^2$, and collection efficiencies on the range 99.84 to 99.96%, Finally, results of long term performance test showed that filters were conditioned after 170hrs. Experimental conditions for effective filtration were examined under the condition 10 cm/sec face velocity, 3kg/$\textrm{cm}^2$ pulsing pressure, 5 min filtration cycle, and 300msec pulse opening time.

  • PDF

Ship Positioning Estimation Using Phased Array Antenna in FMCW Radar System for Small-Sized Ships (소형 선박용 FMCW 레이더 시스템에서의 위상 배열 안테나를 사용한 선박의 위치 추정)

  • Lee, Seongwook;Lee, Seong Ro;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1130-1141
    • /
    • 2015
  • Conventionally, a pulse radar is used for middle-sized or large-sized ships to detect other ships or obstacles located at a long distance. However, it is hardly equipped for most of the small-sized ships due to mounting and maintenance costs. Therefore, FMCW(frequency modulated continuous wave) radar is suggested as an alternative for the small-sized ships. Since it operates with low power and has good range resolution for relatively close objects, it is eligible for the small-sized ships. In previously proposed FMCW radar system, it only estimates distance and velocity of a target ship placed in the direction of main beam and is hard to detect several ships simultaneously. Thus, we suggest the method for detecting several ships at the same time by applying MUSIC(multiple signal classification) algorithm to FMCW radar signal received by a phased array antenna. In addition, by combining digital beam forming with the MUSIC algorithm, better angle resolution is achievable.

The three-dimensional temporal behavior measurement of light emitted from plasma display panel by the Scanned Point-Detecting System (Scanned Point-Detecting System을 이용한 플라즈마 디스플레이 패널에서 방출되는 광의 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸;김준엽
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.559-563
    • /
    • 2002
  • We measure the 3-dimensional temporal behavior of the light emitted from the discharge cell of a plasma display panel (PDP) by using a scanned point detecting system. The light signal detected by a PM tube is sent to the oscilloscope, and the oscilloscope is connected to a PC with GPIB. From the resultant temporal behaviors, we could analyze the discharge characteristics of the panel with a Ne-Xe (4%) mixing gas at a 400 torr pressure. The top view of the panel shows that discharge moves from the inner edge of the cathode electrode to the outer cathode electrode, forming an arc shape. The side view of the panel shows that the light is detected up to 150 $\mu\textrm{m}$ up the barrier rib. After a trigger pulse is applied, peak intensity is detected at 730 ns and peak intensity position is located at the center of the ITO electrodes.

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung;Hwang, Soobeen;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • $K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

Update on infantile hemangioma

  • Jung, Hye Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.559-572
    • /
    • 2021
  • The International Society for the Study of Vascular Anomalies classifies vascular anomalies into vascular tumors and vascular malformations. Vascular tumors are neoplasms of endothelial cells, among which infantile hemangiomas (IHs) are the most common, occurring in 5%-10% of infants. Glucose transporter-1 protein expression in IHs differs from that of other vascular tumors or vascular malformations. IHs are not present at birth but are usually diagnosed at 1 week to 1 month of age, rapidly proliferate between 1 and 3 months of age, mostly complete proliferation by 5 months of age, and then slowly involute to the adipose or fibrous tissue. Approximately 10% of IH cases require early treatment. The 2019 American Academy of Pediatrics clinical practice guideline for the management of IHs recommends that primary care clinicians frequently monitor infants with IHs, educate the parents about the clinical course, and refer infants with high-risk IH to IH specialists ideally at 1 month of age. High-risk IHs include those with life-threatening complications, functional impairment, ulceration, associated structural anomalies, or disfigurement. In Korea, IHs are usually treated by pediatric hematology-oncologists with the cooperation of pediatric cardiologists, radiologists, dermatologists, and plastic surgeons. Oral propranolol, a nonselective beta-adrenergic antagonist, is the first-line treatment for IHs at a dosage of 2-3 mg/kg/day divided into 2 daily doses maintained for at least 6 months and often continuing until 12 months of age. Topical timolol maleate solution, a topical nonselective beta-blocker, may be used for small superficial type IHs at a dosage of 1-2 drops of 0.5% gel-forming ophthalmic solution applied twice daily. Pulse-dye laser therapy or surgery is useful for the treatment of residual skin changes after IH involution.

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.