• Title/Summary/Keyword: pulse electromagnetic fields

Search Result 25, Processing Time 0.026 seconds

Characteristics of the Electromagnetic Fields Radiated from Stepped Leaders Just Prior to Lightning Return Strokes (계단상 리더에 의해서 방사된 귀환뇌격 직전의 전장과 자장 파형의 특성)

  • 이복희;이동문;정동철;장근철;이승칠;정광희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • In this paper statistics on the radiation field waveforms produced by stepped leaders just prior to lightning return strokes were described. As a parameter of stepped leader pulse characteristics, the time interval between the final leader pulse and return stroke peak, the pause time between stepped leaders, the ratio of the final leader peak to the return stroke peak and the stepped leader pulse width at half maximum were examined. The average time intervals between the final leader pulse and return stroke peak were about 16.2 and 14.8$mutextrm{s}$ for the positive and negative polarities, respectively. When the stepped leader approaches closely to ground, the time interval between leader steps was decreased and the mean value was about 17$mutextrm{s}$, and the present results were in reasonable agreement with the data observed in Florida and Japan. The large fraction of the ratios of the final stepped leader pulse to the lightning return stroke peak were distributed over the range from 5 to 35% and in average the ratio of the final leader pulse to the return stroke peak was 17.4$\pm$11.9% for the positive and 18.5$\pm$9.4% for the negative electric field waveforms. In addition, the mean pulse widths at half maximum of the stepped leaders are 1.4Us with a standard deviation of 0.9 for the positive Polarity and 2.2us with a standard deviation of 1.2 for the negative polarity, respectively.

Simulation of Photon Acceleration with Plasma Wake Fields (플라즈마 항적장을 이용한 광자 가속 시뮬레이션)

  • Lee, Hae-June;Kim, Guang-Hoon;Kim, Changbum;Kim, Jong-Uk;Hyyong Suk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.242-243
    • /
    • 2002
  • From the dispersion relation of an electromagnetic (EM) wave propagating through plasmas, w$\^$2/ = w$\sub$p/$\^$2/+c$\^$2/k$\^$2/ the phase velocity (w/k) of the wave is large at high density where w$\sub$p/ is large, and small at low density Therefore, when a laser pulse is located on a downward density gradient of a plasma wave, the phase velocity of the back of the pulse becomes faster than that of the front of the pulse and the pulse wavelength decreases. (omitted)

  • PDF

Pulsed Ultrasound and Pulsed Electromagnetic Field in the Treatment of Muscle Contusion in Rats

  • Cheon, Song-Hee;Lee, Sun-Min
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.225-228
    • /
    • 2012
  • Muscle contusion usually results from a direct blunt impact and is frequently associated with contact sports. Muscle contusion results from microscopic muscle fiber and capillary disruption causing a microhemorrhage dissecting torn fibers and remaining viable muscle fibers. Recent studies concluded that some physical methods, including pulsed ultrasound (PU) and pulsed electromagnetic field (PEMF) treatment, accelerate and facilitate wound healing, improve scar quality and have beneficial effects on muscle and tendon healing. However, there are few studies on the effects of the early use of physical methods, such as PU and PEMF, on the expression of neurotrophic factors. The objective of this study was to investigate the effects of the early application of PU and PEMF, measured through the expression of BDNF in the muscles (gastrocnemius) and spinal cords of rats after skeletal muscle contusion. In the spinal cords and muscles, there was a significant increase of BDNF expression in the PEMF and PU groups, a greater increase was found in the PEMF group than in the PU group. In conclusion, PEMF is a useful therapeutic method that improves muscle healing after muscle contusion.

Features and Statistics on the Magnetic Field Waveforms Radiated by Intracloud Discharges (운방전에 의해서 방사된 자계 파형의 특징과 통계)

  • Lee, Bok-Hee;Lee, Dong-Moon;Cho, Sung-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.59-66
    • /
    • 2005
  • This paper presents some features and statistics of electromagnetic pulses radiated from intracloud lightning discharges. The LabVIEW based-measurement system of time-dependent electromagnetic fields was constructed. The frequency bandwidth of the measuring system ranged from 300[Hz] to 1[MHz], and the response sensitivity was 2.78(mV/nT). The resolution and the maximum recording length of the data acquisition system were 12(bits) and 100[ms], respectively. In the electromagnetic pulses radiated from intracloud discharges, a pronounced bipolar pulse appeared with one or more fast pulses superimposed on the initial front part of the bipolar pulse. The mean duration of intracloud discharges was $1.05{\pm}0.32[ms]$, and an average of about 8 outburst pulses appeared for a period.

Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models (세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가)

  • Lee, Jawoo;Park, Changsoon;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force (전자기력을 이용한 박판 성형공정의 해석적 연구)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

Characteristics of the Electric Fields Produced by Multiple Lightning Return Strokes (다중 낙뢰에 의해서 발생한 전장 파형의 특성)

  • 이복희;정동철;이동문
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.330-336
    • /
    • 2004
  • In this work, in order to obtain the detailed information about lightning electromagnetic pulses, the electric fields radiated from multiple lightning return strokes were measured and analyzed statistically. The electric field measuring system consists of a hemisphere antenna of 30cm in diameter, integrator and data acquisition device, and its frequency bandwidth ranges from 200Hz to 1.56MHz, and the sensitivity is 0.96㎷/V/m. The electric field signals are digitized every 200ns with the transient signal analyzer having the resolution of 12-bit and the recording length of 5 kilowords and are registered at personal computer. As a result, the electric fields produced by the first return stroke begin with a slow initial part or front, which starts just after or during the last stepped leader. On the average the rise times of the electric fields for the positive first, second and third strokes are 4.21${\mu}\textrm{s}$, 3.94${\mu}\textrm{s}$ and 2.75${\mu}\textrm{s}$, respectively, and those for the negative first, second and third strokes are 3.46${\mu}\textrm{s}$, 3.15${\mu}\textrm{s}$ and 2.79${\mu}\textrm{s}$, respectively. The zero-crossing times of the electric fields for first return strokes range from about 10 to 80${\mu}\textrm{s}$. The mean zero-crossing times for subsequent return strokes are shorter than those for first lightning return strokes.

The Analysis of Electromagnetic Scattering of Perfectly Conducting Polygonal Cylinders Using Extrapolation Integral Method (외삽 근사법을 이용한 완전 도체 다각주의 전자파 산란 해석)

  • 이상회;정구철;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.571-579
    • /
    • 1987
  • The integral equations used in electromagnetic fields theory can be used for scattering problems. We can obtain various characteristics of scatterer. Ie, power pattern, scattered field, by finding current distribution on the scatterer. In this paper, current distribution on polygonal cylinder is obtained using integral equations in 2 dimension. For numerical aualysis, the moment method is used with pulse function as a basis function and integral equation is used with extrapolation method, which saves cpu time.

  • PDF

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

Effect of Pulse Magnetic Field Stimulus on Blood Flow using Digital Infrared Thermal Imaging (체열진단을 통한 펄스자기장 자극기의 혈류개선효과 고찰)

  • Lee, Hyun-Sook
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.180-184
    • /
    • 2011
  • The changes in the blood flow in the peripheral vascular system under strong pulsed magnetic fields (pMF) were studied by digital infrared thermal imaging (DITI). After pMF stimulus temperatures in stimulated area were commonly increased in both groups of age and gender. In order to reduce heat generated from coil in pMF stimulus system plastic moldings were fabricated, so that certain distance was kept between stimulus system and the skin and to prevent direct contact to the skin. It is believed that skin temperature is increased by internal electromagnetic energy stimulated the peripheral vascular system by non-contact method.