• 제목/요약/키워드: pullout load

검색결과 134건 처리시간 0.023초

Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.301-313
    • /
    • 2017
  • This paper presents the fibre-matrix interfacial properties of hooked end steel fibres embedded in ultra-high performance mortars with various water/binder (W/B) ratios. The principle objective was to improve bond behaviour in terms of bond strength by reducing the (W/B) ratio to a minimum. Results show that a decrease in W/B ratio has a significant effect on the bond-slip behaviour of both types of 3D fibres, especially when the W/B ratio was reduced from 0.25 to 0.15. Furthermore, the optimization in maximizing pullout load and total pullout work is found to be more prominent for the 3D fibres with a larger diameter than for fibres with a smaller diameter. On the contrary, increasing the embedded length of the 3D fibres did not result in an improvement on the maximum pullout load, but increase in the total pullout work.

수직하중을 받는 모형 강널말뚝의 거동 (Behavior of Model Sheet Piles under Vertical Loads)

  • 윤여원;김두균
    • 한국지반공학회지:지반
    • /
    • 제14권6호
    • /
    • pp.5-16
    • /
    • 1998
  • 모래지반에서 모형강널말뚝의 수직하중에 대한 거동을 알아보기 위하여 말뚝단면적이 동일하고 플랜지의 개구정도가 각기 다른 5개의 모형말뚝을 제작하였으며, 각 말뚝에 대해 상대밀도, 하중작용방향(압축, 인발)을 달리하여 토조내에서 실내 모형말뚝시험을 수행하였다. 동일한 말뚝에 대해 인발하중을 받는 경우보다 압축하중을 받는 경우가 극한지지력에 있어 100%가량 크며, 상대밀도가 조밀할수록 그 차이는 더욱 증가하였다. 인발재하시험에서 극한지지력과 극한상태의 침하량은 상대밀도가 증가함에 따라 증가하였으며, 동일한 지반조건하에서 개구정도의 변화에 따른 극한지지력과 침하량은 일정한 범위내에 존재하였다. 압축하중조건하에서 극한지지력은 개구정도가 30$^{\circ}$이내에 있을 경우 가장 크게 나타났으며, 상대밀도가 커질수록 이러한 경향이 뚜렷하게 나타났다. 단면의 변화에 따른 극한하중 변화는 하중분포의 해석결과 부분폐색효과에 기인된 것으로 생각된다.

  • PDF

Bonding between high strength rebar and reactive powder concrete

  • Deng, Zong-Cai;Jumbe, R. Daud;Yuan, Chang-Xing
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.411-421
    • /
    • 2014
  • A central pullout test was conducted to investigate the bonding properties between high strength rebar and reactive powder concrete (RPC), which covered ultimate pullout load, ultimate bonding stress, free end initial slip, free end slip at peak load, and load-slip curve characteristics. The effects of varying rebar buried length, thickness of protective layer and diameter of rebars on the bonding properties were studied, and how to determine the minimum thickness of protective layer and critical anchorage length was suggested according the test results. The results prove that: 1) Ultimate pull out load and free end initial slip load increases with increase in buried length, while ultimate bonding stress and slip corresponding to the peak load reduces. When buried length is increased from 3d to 4d(d is the diameter of rebar), after peak load, the load-slip curve descending segment declines faster, but later the load rises again exceeding the first peak load. When buried length reaches 5d, rebar pull fracture occurs. 2) As thickness of protective layer increases, the ultimate pull out load, ultimate bond stress, free end initial slip load and the slip corresponding to the peak load increase, and the descending section of the curve becomes gentle. The recommended minimum thickness of protective layer for plate type members should be the greater value between d and 10 mm, and for beams or columns the greater value between d and 15 mm. 3) Increasing the diameter of HRB500 rebars leads to a gentle slope in the descending segment of the pullout curve. 4) The bonding properties between high strength steel HRB500 and RPC is very good. The suggested buried length for test determining bonding strength between high strength rebars and RPC is 4d and a formula to calculate the critical anchorage length is established. The relationships between ultimate bonding stress and thickness of protective layer or the buried length was obtained.

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

풍화암에 근입된 그라운드 앵커의 인발거동 연구 (A Study on the Pullout Behavior of Ground Anchored in Weatherd Rock)

  • 박병수;정길수;전상현;유남재
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.109-117
    • /
    • 2006
  • This study is an numerical study of predicting the behavior of anchor embedded in weathered rocks, subjected to uplift loads, about ultimate pullout capacity and the failure mechanism. Factors influencing the behavior of anchors were investigated by reviewing the data about in-situ anchor tests performing numerical modelling with changing the bondage length of anchor, diameter of anchor body and diameter of tenden, and by Correlations between those factors were evaluated to apply them to predict the behavior of anchors. As results of numerical analysis, a linear relationship between bondage length, diameter of anchor body and diameter of tenden with ultimate pullout capacity was obtained on the one hand, from the result of numerical analysis changing the Young's modulus of weathered rock, this parameter was found to inflence to load-displacement and ultimate pullout capacity within the range of 10%, which was mot so significant to affect.

  • PDF

Test of Headed Reinforcement in Pullout II: Deep Embedment

  • Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.151-159
    • /
    • 2006
  • A total of 32 pullout tests were performed for the multiple headed bars relatively deeply embedded in reinforced concrete column-like members. The objective was to determine the minimum embedment depth that was necessary to safely design exterior beam-column joints using headed bars. The variables for the experiment were embedment depth of headed bar, center-to-center distance between adjacent heads, and amount of supplementary reinforcement. Regular strength concrete and grade SD420 reinforcing steel were used. The results of the test the indicated that a headed bar embedment depth of $10d_b$ was not sufficient to have relatively closely installed headed bars develop the pullout strength corresponding to the yield strength. All the experimental variables, influenced the pullout strength. The pullout strength increased with increasing embedment depth and head-to-head distance. It also increased with increasing amount of supplementary reinforcement. For a group of closely-spaced headed bars installed in a beam-column joint, it is recommended to use column ties at least 0.6% by volume, 1% or greater amount of column main bars, and an embedment depth of $13d_b$ or greater simultaneously, to guarantee the pullout strength of individual headed bars over 125% of $f_y$ and ductile load-displacement behavior.

Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon

  • Kim, Young-Sang;Sung, Hyun-Jong;Kim, Hyun-Woo;Kim, Jae-Min
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.303-317
    • /
    • 2011
  • A specially designed tendon, which is proposed by embedding an FBG sensor into the center king cable of a 7-wire strand tendon, was applied to monitor the prestress force and load transfer of ground anchor. A series of tensile tests and a model pullout test were performed to verify the feasibility of the proposed smart tendon as a measuring sensor of tension force and load transfer along the tendon. The smart tendon has proven to be very effective for monitoring prestress force and load transfer by measuring the strain change of the tendon at the free part and the fixed part of ground anchor, respectively. Two 11.5 m long proto-type ground anchors were made simply by replacing a tendon with the proposed smart tendon and prestress forces of each anchor were monitored during the loading-unloading step using both FBG sensor embedded in the smart tendon and the conventional load cell. By comparing the prestress forces measured by the smart tendon and load cell, it was found that the prestress force monitored from the FBG sensor located at the free part is comparable to that measured from the conventional load cell. Furthermore, the load transfer of prestressing force at the tendon-grout interface was clearly measured from the FBGs distributed along the fixed part. From these pullout tests, the proposed smart tendon is not only expected to be an alternative monitoring tool for measuring prestress force from the introducing stage to the long-term period for health monitoring of the ground anchor but also can be used to improve design practice through determining the economic fixed length by practically measuring the load transfer depth.

모래지반에 설치된 병렬식 그룹석션앵커의 인발하중에 대한 수치해석 연구 (Numerical Analysis of Group Suction Anchor of Parallel Arrangement Installed in Sand Subjected to Pullout Load)

  • 김수린;추연욱;권오순;김동수
    • 한국지반공학회논문집
    • /
    • 제30권11호
    • /
    • pp.61-69
    • /
    • 2014
  • 본 연구에서는 수치해석을 이용하여 모래지반에 설치된 병렬식 그룹석션앵커의 인발하중에 대한 거동을 분석하였다. 단일형과 병렬식 그룹석션 앵커에 대한 수치 모델을 구성하고 인발하중을 재하하여 하중재하점의 위치, 길이/직경비, 하중경사 및 단위앵커간 간격에 따른 그룹형 석션앵커의 인발지지력에 대한 영향을 연구하였다. 더블형과 트리플 그룹앵커의 인발지지력은 단일앵커의 인발지지력 대비 1.7배와 2.4배로 나타났고, 설치간격이 증가함에 따라 그 증가율은 증가하였다. 하중재하점, 하중경사, 단위앵커의 형상비의 차이는 그룹앵커의 인발저항력 증가비에 큰 영향을 주지 않는 것으로 나타났다.

Evaluations of load-deformation behavior of soil nail using hyperbolic pullout model

  • Zhang, Cheng-Cheng;Xu, Qiang;Zhu, Hong-Hu;Shi, Bin;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • 제6권3호
    • /
    • pp.277-292
    • /
    • 2014
  • Soil nailing, as an effective stabilizing method for slopes and excavations, has been widely used worldwide. However, the interaction mechanism of a soil nail and the surrounding soil and its influential factors are not well understood. A pullout model using a hyperbolic shear stress-shear strain relationship is proposed to describe the load-deformation behavior of a cement grouted soil nail. Numerical analysis has been conducted to solve the governing equation and the distribution of tensile force along the nail length is investigated through a parametric study. The simulation results are highly consistent with laboratory soil nail pullout test results in the literature, indicating that the proposed model is efficient and accurate. Furthermore, the effects of key parameters, including normal stress, degree of saturation of soil, and surface roughness of soil nail, on the model parameters are studied in detail.

지반과 쏘일네일링 사이의 전단거동에 관한 연구 (Shear Behavior between Ground and Soil-Nailing)

  • 서형준;이인모
    • 한국지반공학회논문집
    • /
    • 제30권3호
    • /
    • pp.5-16
    • /
    • 2014
  • 쏘일네일링은 지반과 그라우팅 사이의 주면마찰력과 보강재의 인장력을 통해서 저항하는 공법이다. 인발시험을 할 때는 이 두 요소를 모두 고려한 하중-변위 곡선을 얻게 된다. 따라서 본 논문에서는 지반과 그라우팅 사이의 순 하중-변위 곡선을 산정하여 지반과 그라우팅 사이의 전단거동을 규명하는 것이 목적이다. 주면마찰력 산정 이론을 통해서 이론적으로 지반과 그라우팅 사이의 하중-변위 곡선을 산정하였다. 또한 이론 검증을 위해서 지반조건과 시공조건을 변화해 가며 다량의 현장인발시험을 실시하였다. 인발시험을 통해 산정된 하중-변위 곡선에서 철근의 하중-변위 곡선을 빼내게 되면 지반과 그라우팅 사이의 순 하중-변위 곡선을 산정할 수 있으며, 이를 이론식과 비교해 보았을 때 유사한 결과를 얻었다. 이러한 결과를 통해서 지반 및 시공 조건이 주어질 때, 지반과 쏘일네일링 사이에서 발생하는 변위를 예측할 수 있다.