DOI QR코드

DOI QR Code

Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios

  • Abdallah, Sadoon (Civil Engineering, College of Engineering, Design and Physical Sciences, Brunel University London) ;
  • Fan, Mizi (Civil Engineering, College of Engineering, Design and Physical Sciences, Brunel University London) ;
  • Zhou, Xiangming (Civil Engineering, College of Engineering, Design and Physical Sciences, Brunel University London)
  • Received : 2016.07.12
  • Accepted : 2017.01.31
  • Published : 2017.06.30

Abstract

This paper presents the fibre-matrix interfacial properties of hooked end steel fibres embedded in ultra-high performance mortars with various water/binder (W/B) ratios. The principle objective was to improve bond behaviour in terms of bond strength by reducing the (W/B) ratio to a minimum. Results show that a decrease in W/B ratio has a significant effect on the bond-slip behaviour of both types of 3D fibres, especially when the W/B ratio was reduced from 0.25 to 0.15. Furthermore, the optimization in maximizing pullout load and total pullout work is found to be more prominent for the 3D fibres with a larger diameter than for fibres with a smaller diameter. On the contrary, increasing the embedded length of the 3D fibres did not result in an improvement on the maximum pullout load, but increase in the total pullout work.

Keywords

References

  1. Abbas, S., Nehdi, M., & Saleem, M. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271-295. https://doi.org/10.1007/s40069-016-0157-4
  2. Abdallah, S., Fan, M., & Rees, D. W. A. (2016a). Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres. Materials and Design, 112, 539-552. https://doi.org/10.1016/j.matdes.2016.09.107
  3. Abdallah, S., Fan, M., & Zhou, X. (2016b). Effect of hooked-end steel fibres geometry on pull-out behaviour of ultra-high performance concrete. World Academy of Science, Engineering and Technology, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 10(12), 1530-1535.
  4. Abdallah, S., Fan, M., Zhou, X., & Geyt, S. (2016c). Anchorage effects of various steel fibre architectures for concrete reinforcement. International Journal of Concrete Structures and Materials, 10, 325-335. https://doi.org/10.1007/s40069-016-0148-5
  5. Abu-Lebdeh, T., Hamoush, S., Heard, W., & Zornig, B. (2011). Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Construction and Building Materials, 25(1), 39-46. https://doi.org/10.1016/j.conbuildmat.2010.06.059
  6. Adjrad, A., Bouafia, Y., Kachi, M., & Ghazi, F. (2016). Prediction of the rupture of circular sections of reinforced concrete and fiber reinforced concrete. International Journal of Concrete Structures and Materials, 1, 373-381.
  7. Alberti, M. G., Enfedaque, A., Galvez, J. C., Canovas, M. F., & Osorio, I. R. (2014). Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Materials and Design, 60, 57-65. https://doi.org/10.1016/j.matdes.2014.03.050
  8. Alwan, J. M., Naaman, A. E., & Guerrero, P. (1999). Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concrete Science and Engineering, 1(1), 15-25.
  9. Beglarigale, A., & Yazici, H. (2015). Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar. Construction and Building Materials, 75, 255-265. https://doi.org/10.1016/j.conbuildmat.2014.11.037
  10. Bentur, A., Wu, S., Banthia, N., Baggott, R., Hansen, W., Katz, A., Leung, C., Li, V., Mobasher, B., & Naaman, A. (1995). Fiber-matrix interfaces. In A. Naaman & Reinhardt H. (Eds.), Chapter 5 van pre-proceedings 2nd international workshop high performance fiber reinforced cement composites (HPF-RCC-95), 11-14 juni (pp. 139-182). Ann Arbor, MI, USA.
  11. Beygi, M. H. A., Kazemi, M. T., Nikbin, I. M., & Amiri, J. V. (2013). The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Materials and Design, 50, 267-276. https://doi.org/10.1016/j.matdes.2013.02.018
  12. Chan, Y., & Chu, S. (2004). Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research, 34(7), 1167-1172. https://doi.org/10.1016/j.cemconres.2003.12.023
  13. Chan, Y., & Li, V. C. (1997). Effects of transition zone densification on fiber/cement paste bond strength improvement. Advanced Cement Based Materials, 5(1), 8-17. https://doi.org/10.1016/S1065-7355(97)90010-9
  14. Cunha, V. M. (2010). Steel fibre reinforced self-compacting concrete (from micromechanics to composite behavior).
  15. Deeb, R., Ghanbari, A., & Karihaloo, B. L. (2012). Development of self-compacting high and ultra high performance concretes with and without steel fibres. Cement & Concrete Composites, 34(2), 185-190. https://doi.org/10.1016/j.cemconcomp.2011.11.001
  16. Dinh, N., Choi, K., & Kim, H. (2016). Mechanical properties and modeling of amorphous metallic fiber-reinforced concrete in compression. International Journal of Concrete Structures and Materials, 10, 221-236. https://doi.org/10.1007/s40069-016-0144-9
  17. El-Mal, H. A., Sherbini, A., & Sallam, H. (2015). Mode II fracture toughness of hybrid FRCs. International Journal of Concrete Structures and Materials, 9(4), 475-486. https://doi.org/10.1007/s40069-015-0117-4
  18. EN, B. 12350-8. (2010). Testing fresh concrete. Self-compacting concrete. Slump-flow test.
  19. Hwang, J., Lee, D. H., Ju, H., Kim, K. S., Kang, T. H., & Pan, Z. (2016). Shear deformation of steel fiber-reinforced prestressed concrete beams. International Journal of Concrete Structures and Materials, 10(3), 53-63. https://doi.org/10.1007/s40069-016-0159-2
  20. Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7(4), 303-317. https://doi.org/10.1007/s40069-013-0059-7
  21. Joo Kim, D. (2009). Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers. ProQuest.
  22. Kang, S., Lee, K., Choi, J., Lee, Y., Felekoglu, B., & Lee, B. Y. (2016). Control of tensile behavior of ultra-high performance concrete through artificial flaws and fiber hybridization. International Journal of Concrete Structures and Materials, 10(3), 33-41. https://doi.org/10.1007/s40069-016-0155-6
  23. Laranjeira de Oliveira, F. (2010). Design-oriented constitutive model for steel fiber reinforced concrete. Unpublished doctoral dissertation. Universitat Politecnica de Catalunya, Spain.
  24. Lee, S. F., & Jacobsen, S. (2011). Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar. Materials and Structures, 44(8), 1451-1465. https://doi.org/10.1617/s11527-011-9710-4
  25. Lee, Y., Kang, S., & Kim, J. (2010). Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Construction and Building Materials, 24(10), 2030-2041. https://doi.org/10.1016/j.conbuildmat.2010.03.009
  26. Li, H., & Liu, G. (2016). Tensile properties of hybrid fiberreinforced reactive powder concrete after exposure to elevated temperatures. International Journal of Concrete Structures and Materials, 10, 29-37. https://doi.org/10.1007/s40069-016-0125-z
  27. Lim, W., & Hong, S. (2016). Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) beams with shear reinforcement. International Journal of Concrete Structures and Materials, 10, 177-188. https://doi.org/10.1007/s40069-016-0145-8
  28. Lu, L., Tadepalli, P., Mo, Y., & Hsu, T. (2016). Simulation of prestressed steel fiber concrete beams subjected to shear. International Journal of Concrete Structures and Materials, 10(3), 297-306. https://doi.org/10.1007/s40069-016-0153-8
  29. Markovic, I. (2006). High-performance hybrid-fibre concrete: Development and utilisation. Delft: IOS Press.
  30. Petrone, F., Shan, L., & Kunnath, S. K. (2016). Modeling of RC frame buildings for progressive collapse analysis. International Journal of Concrete Structures and Materials, 10(1), 1-13. https://doi.org/10.1007/s40069-016-0126-y
  31. Romualdi, J. P., Ramey, M., & Sanday, S. C. (1968). Prevention and control of cracking by use of short random fibers. Special Publication, 20, 179-204.
  32. Shaikh, F. U. A., Shafaei, Y., & Sarker, P. K. (2016). Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar. Construction and Building Materials, 115, 690-698. https://doi.org/10.1016/j.conbuildmat.2016.04.090
  33. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  34. Sorensen, C., Berge, E., & Nikolaisen, E. B. (2014). Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International Journal of Concrete Structures and Materials, 8(4), 279-287. https://doi.org/10.1007/s40069-014-0083-2
  35. Srikar, G., Anand, G., & Prakash, S. S. (2016). A study on residual compression behavior of structural fiber reinforced concrete exposed to moderate temperature using digital image correlation. International Journal of Concrete Structures and Materials, 10, 75-85.
  36. Tadepalli, P. R., Dhonde, H. B., Mo, Y., & Hsu, T. T. (2015). Shear strength of prestressed steel fiber concrete I-beams. International Journal of Concrete Structures and Materials, 9(3), 267-281. https://doi.org/10.1007/s40069-015-0109-4
  37. Torregrosa, C. E. E. (2014). Dosage optimization and bolted connections for UHPFRC ties.
  38. Van Gysel, A. (2000). Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. Published.
  39. Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368-377. https://doi.org/10.1016/j.conbuildmat.2015.08.095
  40. Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement & Concrete Composites, 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
  41. Wille, K., & Naaman, A. (2010). Bond stress-slip behavior of steel fibers embedded in ultra high performance concrete. Proceedings of 18th European conference on fracture and damage of advanced fiber-reinforced cement-based materials (99-111).
  42. Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Materials Journal, 109(4), 479-588.
  43. Wille, K., & Naaman, A. E. (2013). Effect of ultra-high-performance concrete on pullout behavior of high-strength brass-coated straight steel fibers. ACI Materials Journal, 110(4), 451-462.
  44. Wu, Z., Shi, C., He, W., & Wu, L. (2016a). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
  45. Wu, Z., Shi, C., & Khayat, K. H. (2016b). Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement & Concrete Composites, 71, 97-109. https://doi.org/10.1016/j.cemconcomp.2016.05.005
  46. Yoo, D., & Yoon, Y. (2016). A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. International Journal of Concrete Structures and Materials, 10, 125-142. https://doi.org/10.1007/s40069-016-0143-x
  47. Zeng, Q., Li, K., Fen-chong, T., & Dangla, P. (2012). Pore structure characterization of cement pastes blended with high-volume fly-ash. Cement and Concrete Research, 42(1), 194-204. https://doi.org/10.1016/j.cemconres.2011.09.012

Cited by

  1. Bonding Mechanisms and Strength of Steel Fiber-Reinforced Cementitious Composites: Overview vol.30, pp.3, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002154
  2. Pullout Behavior of Hook End Steel Fibers in Geopolymers vol.31, pp.6, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002722
  3. Effects of Inclination Angle on Pullout Performance of Hooked End Fiber Embedded in UHPC vol.812, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/kem.812.60
  4. Comparisons Between Pull-Out Behaviour of Various Hooked-End Fibres in Normal-High Strength Concretes vol.13, pp.1, 2017, https://doi.org/10.1186/s40069-019-0337-0
  5. Effect of the displacement rate and inclination angle in steel fiber pullout tests vol.223, pp.1, 2017, https://doi.org/10.1007/s10704-019-00398-2
  6. Active Reinforcing Fiber of Cementitious Materials Using Crimped NiTi SMA Fiber for Crack-Bridging and Pullout Resistance vol.13, pp.17, 2017, https://doi.org/10.3390/ma13173845
  7. Influence of embedment length on the pullout behavior of steel fibers from ultra-high-performance concrete vol.276, pp.None, 2020, https://doi.org/10.1016/j.matlet.2020.128233
  8. Effect of sand grain size and fibre size on macro-micro interfacial bond behaviour of steel fibres and UHPC mortars vol.73, pp.5, 2017, https://doi.org/10.1680/jmacr.19.00099
  9. Preparation and performance of the ultra-high performance mortar based on simplex-centroid design method vol.15, pp.None, 2021, https://doi.org/10.1016/j.jmrt.2021.09.107
  10. Cohesive Fracture and Fiber Pullout Responses in Normal and SCC Fiber-Reinforced Concrete vol.147, pp.12, 2017, https://doi.org/10.1061/(asce)em.1943-7889.0002019
  11. Study on the Fracture Toughness of Polypropylene-Basalt Fiber-Reinforced Concrete vol.15, pp.1, 2017, https://doi.org/10.1186/s40069-021-00472-x
  12. Multi-scale analysis on the tensile properties of UHPC considering fiber orientation vol.280, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.114835
  13. Experimental investigation on sing fiber pullout behaviour on steel fiber-matrix of reactive powder concrete (RPC) vol.318, pp.None, 2022, https://doi.org/10.1016/j.conbuildmat.2021.125899