• Title/Summary/Keyword: pullout failure

Search Result 104, Processing Time 0.02 seconds

Experimental Analysis of the fixed socket strength of a removable soil nail (제거식 쏘일네일의 고정자소켓 강도에 관한 실험적 해석)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Yun, Seung-Kwon;Cho, Kyu-Wan;Kim, Woong-Kyu;Lee, Chung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1250-1253
    • /
    • 2008
  • As a reinforcement technique, the application of removable soil nailing has been extended to solve the public grievance of typical soil nailing such as the geotechnical environmental problem and invasion of adjacent land. In the case of removable soil nailing, pullout capacity of the nail depends on the adhesive strength of a fixed socket. Because the existing fixed socket is made from a plastic product, the strength of a socket is less than a steel bar and then the yield failure by abrasion and deformation is occurred on the steel bar-socket contact surface. In this study, therefore, experimental analysis from laboratory test of a removable soil nail equipped with steel socket, improving the adhesive strength of steel bar-socket connection is performed to estimate the increase effect of pullout capacity of a soil nail.

  • PDF

Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber (소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.19-28
    • /
    • 1995
  • Based on the various test data acquired in the field, the large pressure chamber and the small pressure chamber, uplift behaviors and method of determining the ultimate uplift capacity of pile driven in small pressure chamber were studied. After uplift pile experienced 2 or 3 sudden slip due to increase of uplift load, complete pullout failure was occurred. Thus, it appears that the ultimate uplift capacity could be identified as the load at displacement where first slip occurs. The ultimate uplift capacity might be determined in every test and the disturbance after first uplift test could be recovered by adding one blow of the drop hammer, which had to depend on the model pile capacity.

  • PDF

Preliminary Surgical Result of Cervical Spine Reconstruction with a Dynamic Plate and Titanium Mesh Cage

  • Chung, Dae-Yeong;Cho, Dae-Chul;Lee, Sun-Ho;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.2
    • /
    • pp.111-117
    • /
    • 2007
  • Objective : The objective of this study was to validate the effects of a titanium mesh cage and dynamic plating in anterior cervical stabilization after corpectomy. Methods : A retrospective study was performed on 31 consecutive patients, who underwent anterior cervical reconstruction with a titanium mesh cage and dynamic plating, from March 2004 to February 2006. Twenty-four patients had 1-level and 7 had 2-level corpectomies. Ten patients underwent surgery with a cage of 10-mm diameter and 21 with 13-mm diameter. Neurological status and outcomes were assessed according to Odom's criteria. Sagittal angle, coronal angle, settling ratio, sagittal displacement, and cervical lordosis were used to evaluate the radiological outcomes. Results : In overall, 26 [83.9%] of 31 showed excellent or good outcomes. Thirteen percent [4 cases] of the patients developed surgical complications, such as hoarseness, transient dysphagia, or nerve root palsy. Seven [22.6%] patients had reconstruction failure:5 [20.8%] in the 1-level corpectomy group and 2 [28.5%] in the 2-level corpectomy group. Revisions were required in 2 patients with plate pullout due to significant instability. However, none of 5 patients who demonstrated cage displacement or screw pullout, underwent a revision. Radiographs revealed bony consolidation in 96.3% of the patients, including 6 patients with implantation failure during the follow-up period. Conclusion : Based on our preliminary results, the titanium mesh cage and dynamic plating was effective for cervical reconstruction after corpectomy. The anterior cervical reconstruction performed with dynamic plates is considered to reduce stress shielding and greater graft compression that is afforded by the unique plate design.

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

Discrete crack analysis for concrete structures using the hybrid-type penalty method

  • Fujiwara, Yoshihiro;Takeuchi, Norio;Shiomi, Tadahiko;Kambayashi, Atsushi
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.587-604
    • /
    • 2015
  • The hybrid-type penalty method (HPM) is suitable for representing failure phenomena occurring during the transition from continua to discontinua in materials such as concrete. Initiation and propagation of dominant cracks and branching of cracks can easily be modeled as a discrete crack. The HPM represents a discrete crack by eliminating the penalty that represents the separation of the elements at the intersection boundary. This treatment is easy because no change in the degrees of freedom for the discrete crack is necessary. In addition, it is important to evaluate the correct deformation of the continua before the crack formation is initiated. To achieve this, we implemented a constitutive model of concrete for the HPM. In this paper, we explain the implemented constitutive model and describe the simulation of an anchor bolt pullout test using the HPM demonstrating its capability for evaluating progressive failure.

An Experimental Study on Pullout Characteristics of Post-installed Set Anchor for Concrete Under Embedment Depth and Concrete Strength (콘크리트용 후설치 세트앵커의 매입깊이 및 콘크리트 강도에 따른 인발특성에 관한 실험적 연구)

  • Suth, Ratha;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5237-5242
    • /
    • 2013
  • Recently, many bridges become not only functionally obsolete of bridge dick due to inadequate width but also structurally deficient of substructure due to erosion. In these case widening is almost always more economical than complete replacement, and therefore there is a need to make available the results of research and field experience pertaining to the widening of bridge substructure. But, an experimental study for the guarantee of unification between existing and new substructure with post-installed concrete set anchor is so insufficient that the development of post-installed concrete set anchor system for the unification should be settled promptly. The objective is to investigate the effects of anchor embedment depth and concrete strength on pullout characteristics of post-installed concrete set anchor embedded in plain concrete. The effects of embedment depth variable is depending on concrete strength as strong as concrete strength is pullout load is high. Regardless of concrete strength, embedment depth that less than 6 times appeared concrete failure mode but for embedment depth that over 8 times concrete strength has no affection on failure mode.

Structural Performance of the Cast-in-place Anchor in Cracked Concrete used in Power Plant Facilities (균열 콘크리트에 매립된 발전설비 현장설치용 선 설치 앵커의 구조성능 평가)

  • Kim, Dong-Ik;Jung, Woo-young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.120-128
    • /
    • 2019
  • It is very important to verify the seismic performance and stability of the power plant fixture in the domestic power plant, because earthquakes have increased in frequency around the world which resulted in the frequent occurrence of power plant damage caused by the failure of electric power facilities. In this study, through the on-site inspection of power plant fixation unit installed in domestic power plants, we carried out structural performance evaluation of the fixation unit anchor bolts installed on the concrete slabs. The field survey showed M12 J hook anchor bolts were used. Anchor bolt pullout and shear performance evaluation were performed based on ASTM E 488-96 standard. Moreover, artificial crack with the width of 0.5 mm was applied during the experiment based on ATM355.4 and ETAG 001. The comparison of M12 J hook anchor bolt pullout and shear test result to design value required in domestic and international design standard, show a satisfactory result. M12 J hook anchor pullout and shear performance was found to be about 35% and 7%, respectively, higher than the required design value.

The Evaluation on Applicability of Leakage-prevented Sealing Packer Out of Grouted Rockbolt Hole (록볼트 그라우팅 시 역류방지용 밀봉 패커의 적용성 평가)

  • Yang, Taeseon;Kim, Jichang;Jeong, Jongki;Yoo, Dongho;Choi, HakYun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.15-21
    • /
    • 2016
  • Nowadays, some studies have been performed for rockbolt method widely used in Korea. To make large slopes, tunnels or rock structures stable, supporting systems, such as anchor bolt, rock bolt which are developed recently, are commonly used. In this study, laboratory pullout tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of rock bolt by newly developed circular model testers. Re-pullout test for the rock bolt in which loading and unloading cycles are repeated several times showed that the maximum pullout load is almost constant irrespective of the number of loading cycles, which may be due to no failure between rock bolt and filler that is filled with soils and concrete as a substitute. A development of rock bolt fillers as supporters using to protect people in tunnels and slopes is reviewed as a probable man-made hazard after excavation works. The functions of the grouted rock bolts associated with reinforcement effects also should be assessed in this study, which develop the sealing apparatus preventing from overflowing mortar out of a rock bolt hole for securing safety in the tunnel and slopes in order to secure stability named the sealing packer.

Pullout capacity Evaluation of anchor and anchor system development to prevent release of anchors in expansion joint (신축이음장치의 앵커 인발성능 평가 및 나사 풀림 방지를 위한 앵커시스템 개발)

  • Ha, Sang-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • The failure of expansion joints for bridges generally occurs in non-shrinkage mortar another problem is the release of anchors in expansion joints due to the impact and vibration that occurs when cars are driving over a bridge. In this study, to overcome the failure of expansion joints that is related to the failure of non-shrinkage mortar, an elastomeric mortar has been developed. The elastomeric mortar has a highly developed pull-out capacity compared with that of non-shrinkage mortar. Moreover, an anchor system that can be changed easily and prevent the fracture of expansion joints has been developed.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.