• Title/Summary/Keyword: pullout failure

Search Result 104, Processing Time 0.024 seconds

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

Characteristics Study by Pullout Test of Compression(JR-2000) Anchor (선단압축형(JR-2000) 앵커의 인발시험에 관한 특성연구)

  • Oh, Myung-Ju;Park, Tae-Young;Ha, Wook-Jai;Kim, Moon-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.819-824
    • /
    • 2005
  • Anchor system is widely used in construction works to support retaining structures. The compression anchor is characterized by excellent mechanism of pullout resistance, as well as less probability of progressive failure than a tension anchor. This paper presents the mechanical characteristics of a newly developed compression anchor(JR-2000). Field tests were performed to investigate characteristics of the pullout resistance of compression anchor.

  • PDF

Equation of the Development Length for the Pullout tests with GFRP Reinforcement having Splitting Failure (쪼갬파괴가 발생된 GFRP 보강근을 사용한 이음길이 산정식)

  • Ha, Sang-Su;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.859-862
    • /
    • 2008
  • The objective of this study offer the equation of the development length for GFRP reinforcement. Pullout test carried out to propose the development length for GFRP reinforcement. Test variables included embedment length (L=15, 30 and 45d$_b$ ), pure cover thickness(C=0.5, 1.0, 1.5, and 2.0d$_b$ ), diameter of reforcement(D10, D13 and D16), and three types, (domestic : K2KR, K3KR, foreign : AsUS) of GFRP reinforcement. The method of test were introduced pure pullout and tests lasted until the GFRP reinforcements were reached final failure. Based on the results through the pullout test, the bond characteristics and average bond stress for GFRP reinforcement were investigated. The equation of development length was proposed based on the regression analysis selected specimens having splitting failure. The equation gained from this study compared with the design equation provided by ACI committee 440.1R-06. The results through this study are capable of the flexural member design with GFRP reinforcement having lab spliced.

  • PDF

Roles of Bearing Angle in Bond Action of Reinforcing Bars to Concrete

  • Choi OanChul
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.719-724
    • /
    • 2004
  • The ribs of deformed bars can split the cover concrete by wedging action or shear off the concrete in front of the ribs. As slip of deformed bars increases, the rib face angle is flattened by the crushed concrete wedge, which reduces the rib face angle to a smaller bearing angle. The roles of bearing angle are explored to simulate this observation. Analytical expressions to determine bond strength for splitting and pullout failure are derived, where the bearing angle is a key variable. As the bearing angle is reduced, splitting strength decreases and shearing strength increases. When splitting strength becomes larger than shearing strength, the concrete key is supposed to be sheared off and the bearing angle is reduced with decreasing the splitting strength. As bars slip, bearing angle decreases continually so that splitting bond strength is maintained to be less than shearing bond strength. The bearing angle is found to play a key role in controlling the bond failure and determination of bond strength of ribbed reinforcing steel in concrete structures.

Charateristics of the Jointed Steel-Grid Reinforcement and the Application (결합강그리드보강재의 특성 및 적용)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

Pullout Strength after Expandable Polymethylmethacrylate Transpedicular Screw Augmentation for Pedicle Screw Loosening

  • Kang, Suk-Hyung;Cho, Yong Jun;Kim, Young-Baeg;Park, Seung Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.4
    • /
    • pp.229-234
    • /
    • 2015
  • Objective : Pedicle screw fixation for spine arthrodesis is a useful procedure for the treatment of spinal disorders. However, instrument failure often occurs, and pedicle screw loosening is the initial step of a range of complications. The authors recently used a modified transpedicular polymethylmethacrylate (PMMA) screw augmentation technique to overcome pedicle screw loosening. Here, they report on the laboratory testing of pedicle screws inserted using this modified technique. Methods : To evaluate pullout strengths three cadaveric spinal columns were used. Three pedicle screw insertion methods were utilized to compare pullout strength; the three methods used were; control (C), traditional transpedicular PMMA augmentation technique (T), and the modified transpedicular augmentation technique (M). After control screws had been pulled out, loosening with instrument was made. Screw augmentations were executed and screw pullout strength was rechecked. Results : Pedicle screws augmented using the modified technique for pedicle screw loosening had higher pullout strengths than the control ($1106.2{\pm}458.0N$ vs. $741.2{\pm}269.5N$; p=0.001). Traditional transpedicular augmentation achieved a mean pullout strength similar to that of the control group ($657.5{\pm}172.3N$ vs. $724.5{\pm}234.4N$; p=0.537). The modified technique had higher strength than the traditional PMMA augmentation technique ($1070.8{\pm}358.6N$ vs. $652.2{\pm}185.5N$; p=0.023). Conclusion : The modified PMMA transpedicular screw augmentation technique is a straightforward, effective surgical procedure for treating pedicle screw loosening, and exhibits greater pullout strength than traditional PMMA transpedicular augmentation. However, long-term clinical evaluation is required.

Biomechanical analysis of pullout strength of the pedicle screws in relation to change bone mineral density (반복 하중 후 골밀도 감소에 따른 척추경 나사못의 고정력(Pullout Strength)감소 형태 분석)

  • Jung, D.Y.;Lee, S.J.;Kim, D.S.;Shin, J.W.;Kim, W.J.;Suk, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.155-156
    • /
    • 1998
  • Screw loosening and subsequent pullout can be attributed to the reduction in bone mineral density in the vertebrae manifested by osteoporosis in which the decrease in fixation strength between the cancellous bone and screw threads are accelerated by repeated loads exerted by patients own weight and activities following the surgery. In this study, the change in pullout strength of the pedicle screws was investigated before and after repeated loads were imparted. For this purpose. Diapason pedicle screws $(6.7\times40mm)$ were inserted onto fresh porcine spine specimens (T1-L5) after bone mineral density was measured using a DEXA. With an MTS, an axial load was applied at a loading rate of 0.33mm/sec until failure to measure the maximum pullout strength. Flexion moment of 7.5N-m was then imparted at 0.5Hz for 2000 cycles. It was found that the maximum pullout strength was exponentially related to BMD regardless of load types ($107.71\;\times\;\exp^{(1.43{\times}BMD)}r^2=0.93$, P<0.0001 without repeated load; ($107.71\;\times\;\exp^{(2.19{\times}BMD)}r^2=0.78$, P<0.0001 with repeated load). The results suggest that the reduction in pullout strength for pedicle screws is far more prominent in osteoporotic spine than in normal spine especially as number of repeated load was increased. More importantly, it was demonstrated that the level of bone mineral density and the activity level of the patient should be evaluated in more detail for successful implementation of pedicle screw systems in spinal surgery.

  • PDF

Evaluation of Pullout Capacity of Anchors by Bonded Length through Model Test (모형시험을 통한 정착길이별 앵커의 인발저항력 평가)

  • Han, Jae-Myoung;Kim, Gyu-Hyeong;Woo, Jong-Tae;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.11-19
    • /
    • 2017
  • A series of pullout tests to compression type anchors is conducted. The test is carried out on a couple of steel cables installed in sandy soil with 60% of relative density. The test is performed with 6 different bonded lengths, which are 1, 2, 3, 4, 5, 6 times longer than the initial bonded length (Lc =30 mm). A numerical analysis with the same condition as the test is also performed to compare each other. Finally, those results are compared with theoretical result by Oosterbaan and Gifford (1972). The result shows that the ultimate pullout capacity appears to increase with an increase of bonded length, and that the results of test, numerical analysis and theoretical approach have a good agreement in the ultimate pullout capacity at failure.

Pullout Test of Reinforcement with End Mechanical Anchoring Device (단부 기계적 정착장치를 갖는 철근의 뽑힘강도)

  • 김용곤;임원석;최동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.430-439
    • /
    • 2002
  • The development of reinforcing steel is required in reinforced concrete structures. The standard hooks that have been widely used for the tensile development in the beam-column joints tend to create difficulties of construction such as steel congestion as the member cross sections are becoming smaller due to the use of higher strength concrete and higher grade steel. Using the reinforcing bars with end mechanical anchoring device (headed reinforcement) provides potential economies in construction such as reduction in development lengths, simplified details, and improved responses to cyclic loadings. In this paper, the pullout strengths and behaviors of the headed reinforcement were experimentally studied. In 33 pullout tests performed using D25 deformed reinforcing bars, the test parameters were embedment depth, edge distance, head size, and the use of transverse reinforcement. The pullout strengths determined from tests closely agreed with the pullout strengths predicted using the CCD method. The pullout strengths increased with increasing embedment depths nd edge distances. The strengths tend to increase with the use of larger heads. From the experimental program where the effect of the transverse reinforcement was examined, a modification factor to the CCD was suggested to represent the effect of such reinforcement that is installed across the concrete failure plane on the pullout strengths.