• Title/Summary/Keyword: pull-off force

Search Result 32, Processing Time 0.023 seconds

An Experimental Study on the Micro-adhesion of Octadecyltrichlorosilane SAM on the Si Surface (OTS SAM의 미소 응착 특성에 관한 실험적 연구)

  • 윤의성;박지현;양승호;한흥구;공호성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.341-346
    • /
    • 2000
  • The effect of OTS(octadecyltrichlorosilane) SAM(self-assembled monolayer) on the micro-adhesion has been studied. OTS SAM was formed on the Si(100) surface and SPM (scanning probe microscope) tips with different radius of curvature were fabricated by a series of masking and etching processes. Pull-off forces of different tips on Si and OTS SAM surfaces were measured by SPM in different relative humidities. The surface of OTS SAM was changed to hydrophobic surface and the micro-adhesion force of OTS SAM was lower than that of pure Si. As the tip radius of curvature and the relative humidity increased. the micro-adhesion force increased. Based on the test results. the main parameter affected to the micro-adhesion was absorbed humidity on the surface.

  • PDF

A Study on the Release Characteristics During Wafer-Level Lens Molding Using Thermosetting Materials (열경화성 소재를 사용한 웨이퍼 레벨 렌즈 성형 중 이형 특성에 관한 연구)

  • Park, Si-Hwan;Hwang, Yeon;Kim, Dai-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.461-467
    • /
    • 2021
  • Among the defect factors that can occur when a wafer-level lens is molded using a thermosetting material, the mold sticking problem of a molded lens during the release process can damage the molded substrate and deform the substrate at the wafer level. An experiment was conducted to examine the factors affecting the demolding force in the lens forming process. The demolding force was examined according to the coating material of the molds. The mold was surface-treated with ITO and Ti, followed by plasma treatment in an O2 atmosphere. A DLC coating was then performed, and the curing and releasability were examined. A coating method for the pull-off experiment was selected based on the results. To measure the demolding force according to the curing process conditions, a method of curing at a constant pressure and a method of curing at a constant position were applied. As a result, the TiO2 surface treatment reduced the release force. When cured by controlling the location, curing shrinkage can reduce the adhesion energy of the interface during curing, resulting in better demolding.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

Development Plan for the First GMT ASM Reference Body

  • Yang, Ho-Soon;Oh, Chang-Jin;Biasi, Roberto;Gallieni, Daniele
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.3-77
    • /
    • 2021
  • GMT secondary mirror system consists of 7 segmented adaptive mirrors. Each segment consists of a thin shell mirror, actuators and a reference body. The thin shell has a few millimeters of thickness so that it can be easily bent by push and pull force of actuators to compensate the wavefront disturbance of light due to air turbulence. The one end of actuator is supported by the reference body and the other end is adapted to this thin shell. One of critical role of the reference body is to provide the reference surface for the thin shell actuators. Therefore, the reference body is one of key components to succeed in development of GMT ASM. Recently, Korea Research Institute of Standards and Science (KRISS) and University of Arizona (UA) has signed a contract that they will cooperate to develop the first set of off-axis reference body for GMT ASM. This project started August 2021 and will be finished in Dec. 2022. The reference body has total 675 holes to accommodate actuators and 144 pockets for lightweighting. The rear surface has a curved rib shape with radius of curvature of 4387 mm with offset of 128.32mm. Since this reference body is placed just above the thin shell so that the front surface shape needs to be close to that of thin shell. The front surface has a concave off-axis asphere, of which radius of curvature is 4165.99 mm and off-axis distance is about 1088 mm. The material is Zerodur CTE class 1 (CTE=0.05 ppm/oC) from SCHOTT. All the actuator holes and pockets are machined normal to the front surface. It is a very complex challenging optical elements that involves sophisticated machining process as well as accurate metrology. After finishing the fabrication of reference body in KRISS, it will be shipped to UA for final touches and finally sent to Adoptica in Italy, in early 2023. This paper presets the development plan for the GMT ASM Reference Body and relevant fabrication and metrology plans.

  • PDF

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.

Kinematical Analysis of Men's Pole Vault Event (장대높이뛰기 경기의 운동학적 분석)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.15-26
    • /
    • 2003
  • This study was conducted to investigate the performance times, CM position and CM speed, pole chord length and pole chord angle, whole body angular momentum(X axis), and grip width in pole vault event according to the event and phase; touch down, pole plant, take-off, maximum pole bending pole straight, pole release, peak height, and foot contact, pole contact, free flight. The pole vaulting of four male elite vaulters including six trial were filmed using two video digital cameras at 60 Hz at 56th national athletic match, and data were collected through the DLT method of three dimensional cinematography. In general the better jumper is, the longer the performance time is. And the greater CM speed is, and the better his transformation ability of CM horizontal speed into vertical speed is. As he uses a longer pole, his grip is higher, and it is a enough for him to rock back his body, so that he pulls and pushes the pole well keeping his hips close to. An greater maximum angular momentum and early positioning of the hips parallel to the bar makes his body far side of the bar and his bar clearance easier. Specially our national jumper needs to have more powerful braking force during foot contact phase, and take his body on the pole after maximum pole bending, and pull and push the pole strongly keeping his hips close to. Also he needs to have stronger muscular strength in order to control the longer pole and use the pole of proper tension more efficiently.

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable (송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가)

  • Cho, Hui Jae;Kim, You Sub;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.378-384
    • /
    • 2019
  • Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.

Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method (PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향)

  • Hyun Jin;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

A Study of Minute Particles' Adhesion on a Rough Surface for a Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정을 위한 거친표면 위 미세입자의 점착특성 연구)

  • Seok, Jong-Won;Lee, Seong-Hoon;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • Among a variety of cleaning processes, the cryogenic carbon dioxide ($CO_2$) cleaning has merits because it is highly efficient in removing very fine particles, innoxious to humans and does not produce residuals after the cleaning, which enables us to extend its area of coverage in the semi-conductor fabrication society. However, the cryogenic carbon dioxide cleaning method has some technical research issues in aspect to particles' adhesion and removal. To resolve these issues, performing an analysis for the identification of particle adhesion mechanism is needed. In this study, a research was performed by a theoretical approach. To this end, we extended the G-T (Greenwood-Tripp) model by applying the JKR (Johnson-Kendall-Roberts) and Lennard-Jones potential theories and the statistical characteristics of rough surface to investigate and identify the contact, adhesion and deformation mechanisms of soft or hard particles on the rough substrate. The statistical characteristics of the rough surface were taken into account through the employment of the normal probability distribution function of the asperity peaks on the substrate surface. The effects of surface roughness on the pull-off force for these particles were examined and discussed.

Physical Properties of UV-Curable Powder Coatings with Different Photoinitiator Contents (광개시제의 함량에 따른 UV 경화형 분체도료의 물리적 특성)

  • Moon, Je-Ik;Choi, Jae-Hoon;Hwang, Hyun-Deuk;Kim, Hyun-Joong;Kim, Nam-Hong
    • Journal of Adhesion and Interface
    • /
    • v.9 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • A series of UV-curable powder coatings with different contents of photoinitiator (0.5 wt%, 1 wt%, 2 wt%) were formulated and measured gel content, tensile strength of cured film. Heat-sensitive substrates such as MDF, plywood and PVC were coated UV-curable powder and cured coatings were measured physical properties by pendulum hardness tester, glossmeter, pull-off adhesion tester. With increasing photoinitiator content, adhesion force between coating and substrate decreased because of crosslinking density increasing. The results of pendulum hardness was not significantly changed but gloss was changed according to different substrates. Adhesion of UV-curable coatings was enough to apply for heat-sensitive substrates. From these results, we concluded that contents of photoinitiator was a effective factor in UV-curable powder coatings. UV-curable coatings was a portential candidate for heat-sensitive substrates.

  • PDF