본 연구는 수요자중심의 종합병원 환경디자인 기초연구로서 세대별 사용자 이용행태 특성을 분석하는데 목적이 있다. 이를 위하여 문헌연구를 통하여 세대 및 병원에서의 행태를 파악하였으며, 20대부터 60대 까지 각 세대별 300명씩, 총 1500명을 대상으로 설문조사를 실시하였다. 본 연구결과는 다음과 같다. (1) 이용빈도, 방문목적, 방문시간대, 이용교통수단, 동행인원, 주방문공간, 대기 중 행위, 종합병원 선택방법 관련 항목에서 세대별 유의한 차이가 있는 것으로 나타났다. (2) 전 세대에서 종합병원은 주로 연1-2회 방문한다고 응답하였으며, 20대와 30대는 치료 및 진료를 위하여, 40대, 50대, 60대는 건강검진을 위하여 방문한다고 응답한 비율이 높게 나타나 건강검진센터가 장년층(40s, 50s, 60s)의 특성을 고려한 환경계획이 이루어져야 할 것이다. (3) 40대, 50대, 60대는 평일 오전에 주로 종합병원을 방문하며, 20대, 30대는 주말 오전에 방문한다고 응답한 비율이 상대적으로 높게 나타났다. (4) 종합병원 방문 시 20대는 대중교통을 주로 이용하며 30에서 60대 까지 주로 자가용을 이용하는 비율이 높게 나타났다. (5) 20대는 주로 '로비'를 방문한다고 하였고, 연령대가 높아질수록 '외래진료실' 이라고 응답한 비율이 높게 나타나, 노인층을 배려한 외래진료실 환경구축이 필요할 것이다. (6) 이용자 대부분은 대기시간에 휴대전화를 사용한다고 대답하였고, 연령대가 높아질수록 TV시청, 책 또는 잡기 읽기, 아무것도 안한다고 응답한 비율이 높게 나타났다. 그러므로 휴대전화 사용과 시각적 미디어 관람 환경을 서비스 차원에서 제공하는 것이 필요할 것이다.
본 연구는 2020 KDRIs를 활용한 영양 교육 프로그램 및 교육매체가 대학생의 영양 지식과 식습관에 미치는 영향을 조사하였다. 다양한 교육매체 (테이블 매트, 레시피북 등)를 바탕으로 설계된 교육 프로그램은 경상남도 및 경기도 지역의 대학에서 시행되었다. 본 연구에 참여한 대상자는 총 128명이이었으며, 교육군 (n = 75)과 대조군 (n = 53)은 무작위 배정하였다. 교육군은 교육 프로그램 참여 전에 영양 지수 (NQ) 및 영양지식 평가 설문지 조사를 실시하였으며, 6주간의 교육 기간 동안 교육 프로그램 참여 후 동일한 설문지를 이용하여 영양 지수 (NQ) 및 지식 평가를 진행하였다. 대조군은 6주간의 교육 프로그램 참여없이 사전 및 사후에 영양지수 (NQ) 및 영양지식 평가 설문지 조사만 참여하였다. 교육군은 6주간의 2020 KDRIs를 활용한 영양 교육 프로그램의 영향으로 NQ 실천 항목, 영양 지식, 1일 섭취량 및 식사량 지식 (p < 0.05)에 대한 응답에서 긍정적인 결과를 나타냈다. 또한 프로그램 참여 후 최종평가 결과에서 자기평가 점수가 유의하게 높게 나타났으며, 자기만족도는 증가한 것으로 나타났고 (p < 0.05), 2020 KDRIs를 활용한 영양 교육 프로그램에 대한 전체적인 만족도는 99.2%를 달성했다 (p < 0.000). 그러나 대조군의 경우에는 큰 변화를 확인할 수 없었다. 따라서, 본 연구는 2020 KDRIs를 활용한 영양 교육 프로그램 및 교육 매체가 대학생의 영양지식과 식습관에 긍정적인 영향을 미친다는 것을 입증했다. 그러나 이러한 결과를 유지하고 꾸준히 실천하기 위해서는 다양한 영양 교육 프로그램의 지속적인 개발과 실행이 필요할 것이다.
Generative AI는 전 세계적으로 많은 관심을 받고 있으며, 이를 비즈니스 환경에서 효과적으로 활용하기 위한 방안이 모색되고 있다. 특히 OpenAI사에서 개발한 Large Language Model인 GPT-3.5 모델을 적용한 ChatGPT 서비스의 대중 공개 이후 더욱 주목받으며 전반적인 산업 분야에 큰 영향을 미치고 있다. 이 연구는 Generative AI, 특히 그 중에서도 OpenAI사의 GPT-3.5 모델을 적용한 ChatGPT의 등장에 초점을 맞춰 스타트업 업계에 미치는 영향을 조사하고 등장 이전과 이후에 일어난 변화를 비교하였다. 본 연구는 스타트업 업계에서 Generative AI가 어떻게 활용되고 있는지를 상세히 조사하고 ChatGPT의 등장이 업계에 미친 영향을 분석함으로써 비즈니스 환경에서 Generative AI의 실제 적용과 영향력을 밝히는 것을 목표로 한다. 이를 위해 ChatGPT 발표 전후에 등장한 Generative AI 관련 스타트업의 기업 정보를 수집하여 산업군, 사업 내용, 투자 정보 등의 변화를 분석하였다. 키워드 분석, 토픽 모델링, 네트워크 분석을 통해 스타트업 업계의 동향과 Generative AI의 도입이 스타트업 업계에 어떤 혁신을 가져왔는지 파악하였다. 연구 결과, ChatGPT의 등장 이후 Generative AI 관련 스타트업의 창업이 증가한 것을 알 수 있었으며 특히 Generative AI 관련 스타트업의 자금 조달 총액과 평균 금액이 크게 증가한 것을 확인할 수 있었다. 또한, 다양한 산업군에서 Generative AI 기술을 적용하고자 하는 시도를 보이고 이를 활용한 기업용 애플리케이션, SaaS 등 서비스와 제품의 개발이 활발해지며 새로운 비즈니스 모델의 등장에 영향을 미치고 있음을 확인하였다. 본 연구 결과를 통해 Generative AI가 스타트업 업계에 미치는 영향을 확인하였으며, 이러한 혁신적인 신기술의 등장이 비즈니스 생태계에 어떠한 변화를 가져다 줄 수 있는 지 이해하는데 이바지할 수 있다.
Hyung Sun Kim;Mee Joo Kang;Jingu Kang;Kyubo Kim;Bohyun Kim;Seong-Hun Kim;Soo Jin Kim;Yong-Il Kim;Joo Young Kim;Jin Sil Kim;Haeryoung Kim;Hyo Jung Kim;Ji Hae Nahm;Won Suk Park;Eunkyu Park;Joo Kyung Park;Jin Myung Park;Byeong Jun Song;Yong Chan Shin;Keun Soo Ahn;Sang Myung Woo;Jeong Il Yu;Changhoon Yoo;Kyoungbun Lee;Dong Ho Lee;Myung Ah Lee;Seung Eun Lee;Ik Jae Lee;Huisong Lee;Jung Ho Im;Kee-Taek Jang;Hye Young Jang;Sun-Young Jun;Hong Jae Chon;Min Kyu Jung;Yong Eun Chung;Jae Uk Chong;Eunae Cho;Eui Kyu Chie;Sae Byeol Choi;Seo-Yeon Choi;Seong Ji Choi;Joon Young Choi;Hye-Jeong Choi;Seung-Mo Hong;Ji Hyung Hong;Tae Ho Hong;Shin Hye Hwang;In Gyu Hwang;Joon Seong Park
한국간담췌외과학회지
/
제28권2호
/
pp.161-202
/
2024
Backgrounds/Aims: Reported incidence of extrahepatic bile duct cancer is higher in Asians than in Western populations. Korea, in particular, is one of the countries with the highest incidence rates of extrahepatic bile duct cancer in the world. Although research and innovative therapeutic modalities for extrahepatic bile duct cancer are emerging, clinical guidelines are currently unavailable in Korea. The Korean Society of Hepato-Biliary-Pancreatic Surgery in collaboration with related societies (Korean Pancreatic and Biliary Surgery Society, Korean Society of Abdominal Radiology, Korean Society of Medical Oncology, Korean Society of Radiation Oncology, Korean Society of Pathologists, and Korean Society of Nuclear Medicine) decided to establish clinical guideline for extrahepatic bile duct cancer in June 2021. Methods: Contents of the guidelines were developed through subgroup meetings for each key question and a preliminary draft was finalized through a Clinical Guidelines Committee workshop. Results: In November 2021, the finalized draft was presented for public scrutiny during a formal hearing. Conclusions: The extrahepatic guideline committee believed that this guideline could be helpful in the treatment of patients.
최근 독감 예측이나 부동산가격 예측 등 다양한 분야에서 웹검색 트래픽이나 소셜 네트워크 등의 방대한 고객 데이터를 통해 사회 현상, 소비 트렌드 등을 분석하고자 하는 시도가 증가하고 있다. 최근 구글이나 네이버 등의 인터넷 포털서비스 업체들은 온라인 사용자들의 웹검색 트래픽 정보를 구글 트렌드, 네이버 트렌드 등의 서비스로 공개하고 있는데, 이들이 제공하는 웹검색 트래픽 정보를 기반으로 온라인 사용자들의 정보 검색 행태에 대한 연구들이 학계 업계 등에서 주목받고 있다. 웹검색 정보를 기반으로 사회 현상이나, 소비 동향, 정치 투표 결과 등을 예측해 볼 수 있음을 실증하고 있는 분야는 많은 연구가 수행되고 있지만, 웹검색 트래픽 정보를 이용하여, 소비자의 제품에 대한 중요한 속성 도출 및 소비자의 기대 변화 관측 등의 온라인 사용자 행태에 초점을 맞추어 연구되고 있는 분야는 상대적으로 많은 연구가 수행되고 있지는 않다. 따라서, 본 연구에서는 구글이나 네이버가 제공하는 소비자의 웹검색 트래픽을 활용해서 소비자가 생각하는 제품 포지션을 가시화할 수 있는 방법을 제안한다. 브랜드 간의 관계를 확인하기 위해, 동시 검색 트래픽 정보를 활용하여 네트워크 모델링의 방법을 사용한 시스템을 제안하고 있으며, 이를 통해 소비자들이 제품 간의 유사성을 어떻게 인지하고 형성하며, 새로운 혁신 제품 카테고리 내에서 제품 브랜드들이 소비자의 마음 속에서 어떻게 자리 잡고 있는지의 브랜드 포지셔닝을 확인할 수 있는 방법론을 제안하였다. 또한 이를 태블릿 PC의 사례를 통해서, 미시적인 관점에서 소비자의 마음속에 위치한 태블릿 PC 개별 브랜드들의 위치 및 관계를 보여주었다. 기업은 소비자의 제품에 대한 인식 및 중요 속성 도출을 위해 많은 비용과 시간을 소요하여 소비자 조사를 행하게 되는데, 본 연구의 방법론을 활용하여 소비자의 제품에 대한 인식, 제품간 유사도, 제품에 대한 중요 속성의 변화 등을 일반에게 공개된 검색 트래픽 정보를 활용하여 비교적 쉽고 추가적인 비용 없이 도출할 수 있을 것이다.
최근 도심을 중심으로 연립 다세대의 거래가 활성화되고 직방, 다방등과 같은 플랫폼 서비스가 성장하고 있다. 연립 다세대는 수요 변화에 따른 시장 규모 확대와 함께 정보 비대칭으로 인해 사회적 문제가 발생 되는 등 부동산 정보의 사각지대이다. 또한, 서울특별시 또는 한국감정원에서 사용하는 5개 또는 25개의 권역 구분은 행정구역 내부를 중심으로 설정되었으며, 기존의 부동산 연구에서 사용되어 왔다. 이는 도시계획에 의한 권역구분이기 때문에 부동산 연구를 위한 권역 구분이 아니다. 이에 본 연구에서는 기존 연구를 토대로 향후 주택가 격추정에 있어 서울특별시의 공간구조를 재설정할 필요가 있다고 보았다. 이에 본 연구에서는 연립 다세대 실거래가 데이터를 기초로 하여 헤도닉 모형에 적용하였으며, 이를 K-Means Clustering 알고리즘을 사용해 서울특별시의 공간구조를 다시 군집하였다. 본 연구에서는 2014년 1월부터 2016년 12월까지 3년간 국토교통부의 서울시 연립 다세대 실거래가 데이터와 2016년 공시지가를 활용하였다. 실거래가 데이터에서 본 연구에서는 지하거래 제거, 면적당 가격 표준화 및 5이상 -5이하의 실거래 사례 제거와 같이 데이터 제거를 통한 데이터 전처리 작업을 수행하였다. 데이터전처리 후 고정된 초기값 설정으로 결정된 중심점이 매번 같은 결과로 나오게 K-means Clustering을 수행한 후 군집 별로 헤도닉 모형을 활용한 회귀분석을 하였으며, 코사인 유사도를 계산하여 유사성 분석을 진행하였다. 이에 본 연구의 결과는 모형 적합도가 평균 75% 이상으로, 헤도닉 모형에 사용된 변수는 유의미하였다. 즉, 기존 서울을 행정구역 25개 또는 5개의 권역으로 나뉘어 실거래가지수 등 부동산 가격 관련 통계지표를 작성하던 방식을 속성의 영향력이 유사한 영역을 묶어 16개의 구역으로 나누었다. 따라서 본 연구에서는 K-Means Clustering 알고리즘에 실거래가 데이터로 헤도닉 모형을 활용하여 연립 다세대 실거래가를 기반으로 한 군집분류방법을 도출하였다. 또한, 학문적 실무적 시사점을 제시하였고, 본 연구의 한계점과 향후 연구 방향에 대해 제시하였다.
본 연구는 현대 사회에서 가장 가치 있는 문화자산이자 한류의 흐름에서 특히 중요한 위치를 차지하는 디지털 음악에 초점을 두었다. 디지털 음악에 대하여 공신력 있는 음원 차트인 '가온 차트'에 진입한 음원들의 73주간 순위 변화를 수집하였으며 유사한 특징을 가지는 패턴들로 분류하였다. 이후 각 순위 변화 패턴으로부터 주목할 만한 특징에 대한 설명적 분석을 수행하였다. 구체적으로 음원에 대한 신뢰도 이슈가 발생하기 이전 기간의 국내 발매된 디지털 음원들로 한정하여 시점을 일치시킨 후 시계열 군집분석을 통해 패턴을 도출하고자 하였다. 데이터 수집과 전처리를 통하여 742건의 중복되지 않는 음원들을 확보하였고, 시계열 순위 변화에 대한 시계열 군집분석 결과 16개의 패턴들이 도출되었다. 이후 도출된 패턴들을 기반으로 '스테디셀러'와 '원 히트 원더'의 두 가지 유형의 대표적인 패턴을 확인하였다. 나아가 두 패턴에 대하여 차트 내에서 음원의 생존 기간과 음원 순위에 관점에서 다섯 가지의 세분화된 패턴으로 분류하였다. 각 패턴들이 가지는 중요한 특징들은 다음과 같다. 원 히트 원더형 패턴에서 아티스트의 슈퍼스타 효과와 편승효과가 강하게 나타났으며, 소비자들의 디지털 음원 선택에 강한 영향을 미친다는 것을 확인하였다. 나아가 스테디셀러형 패턴을 통해서 매우 오랜시간 소비자들의 선택을 받는 음원들을 확인하였고, 소비자의 니즈를 관통하며 가장 많은 선택을 받는 음원들이 오히려 원 히트 원더형 패턴이 아니라 스테디셀러: 중기 패턴에 포진하고 있음을 확인하였다. 특히 주목할 만한 점은 스테디셀러형 패턴을 통해 기존의 패턴과는 상반되는 '차트 역주행' 현상을 확인했다는 것이다. 본 연구는 디지털 음원을 중심으로 상대적으로 소외되었던 분야인 시간의 흐름에 따른 음원의 순위 변화에 초점을 두었고, 음원의 흥행과 순위를 예측하는 것이 아니라 순위 변화의 패턴을 세분화함으로써 음원 연구에 대한 새로운 접근을 시도하였다는 점에서 의의가 있다.
제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.
우리나라의 주력 산업 중 하나였던 정보통신 및 가전 산업은 점차 수출 비중이 낮아지는 등 수출 경쟁력이 약화되고 있다. 본 연구는 이런 정보통신 및 가전 산업의 수출 제고를 돕기 위해서 객관적으로 수출경쟁력을 분석하고 수출 유망국가를 제시하고자 했다. 본 연구는 수출경쟁력 평가를 위해서 네트워크 분석 중 구조적 특징, 중심성 그리고 구조적 공백 분석을 수행했다. 유망 수출 국가를 선정하기 위해서는 기존에 경제적 요인 외에도 이미 형성된 글로벌 무역 네트워크(ITN) 즉 글로벌 밸류체인(GVC)의 특성을 고려할 수 있는 새로운 변수를 제안했다. 국가간 무역 네트워크 분석에서 Exponential Random Graph Model(ERGM)을 통해 도출된 개별적인 링크에 대한 조건부 로짓값(log-odds)을 수출가능성을 나타낼 수 있는 대리변수로 가정했다. 이런 ERGM의 링크 연결 가능성까지 고려해 수출 유망국가를 추천하는 데는 모수적 접근 방법과 비모수적 접근 방법을 각각 활용했다. 모수적 방법에서는 ERGM에서 도출된 네트워크의 링크별 특성값을 기존의 경제적 요인에 추가 고려하여 우리나라 정보통신 및 가전 산업 수출액을 예측하는 회귀분석 모형을 개발했다. 또한 비모수적 접근 방법에서는 클러스터링 방법을 바탕으로 한 Abnormality detection 알고리즘을 활용했는데, 2개 Peer(동배)에서 벗어난 이상값을 찾는 방법으로 수출 유망국가를 제안했다. 연구 결과에 따르면, 해당 산업 수출 네트워크의 구조적 특징은 이전성이 높은 연결망이었으며, 중심성 분석결과에 따르면 우리나라는 수출에 규모에 비해서 영향력이 약한 것으로 나타났고, 구조적 공백 분석결과에서 수출 효율성이 약한 것으로 나타났다. 본 연구가 제안한 추천모델에 따르면 모수 분석에서는 이란, 아일랜드, 북마케도니아, 앙골라, 파키스탄이 유망 수출 국가로 나타났으며, 비모수 분석에서는 카타르, 룩셈부르크, 아일랜드, 북마케도니아, 파키스탄이 유망 국가로 분석되었으며, 분석방법에 따라 추천된 국가에서는 일부 차이가 나타났다. 본 연구결과는 GVC에서 우리나라 정보통신과 가전 산업의 수출경쟁력이 수출 규모에 비해서 높지 않음을 밝혔고, 따라서 수출이 더욱 감소될 수 있음을 보였다. 또한 본 연구는 이렇게 약화된 수출경쟁력을 높일 수 있는 방안으로 다른 국가들과의 GVC 네트워크까지 고려해 수출유망 국가를 찾는 방법을 제안했다는데 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.