• Title/Summary/Keyword: pseudomonas putida

Search Result 298, Processing Time 0.024 seconds

Molecular Structure of the PHA Synthesis Gene Cluster from New mcl-PHA Producer Pseudomonas putida KCTC1639

  • KIM TAE-KWON;VO MINH TRI;SHIN HYUN-DONG;LEE YONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1120-1124
    • /
    • 2005
  • Pseudomonas putida KCTC 1639 was newly identified as a potential producer of biodegradable medium chain length polyhydroxyalkanoates. It exhibited a carbon assimilation pattern quite different from other known P. putida strains, but a more similar pattern with P. oleovorans, which assimilates the carbon sources mainly through ${\beta}$-oxidation rather than the fatty acid biosynthesis pathway. The PHA synthesis gene cluster from P. putida KCTC1639 was composed of two gene loci; the PHA synthase gene locus and granule-associated gene locus, which were cloned and deposited in the GenBank under accession numbers AY286491 and AY750858 as a new nucleotide sequence, respectively. The molecular structure and amino acid homology of the new gene cluster were compared with those from Pseudomonas species, including other P. putida strains and P. oleovorans, and a higher than $90\%$ homology was observed.

Involvement of Heat-stable and Proteinaceous Materials in the Culture of Pseudomonas putida JB-1 for the Inhibition of Tobacco mosaic virus Infection

  • Jeon, Yong-Ho;Kim, Jae-Hyun;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.328-336
    • /
    • 2008
  • Out of various fungi and bacteria tested for inhibition of Tobacco mosaic virus(TMV) infection using Nicotiana tabacum cv. Xanthi-nc, a bacterial isolate JB-l, identified as Pseudomonas putida had a strong direct inhibitory activity against the TMV infection. Its systemic or indirect activity was also noted at more than a half level of the direct control efficacy. Disease severity was reduced significantly in the susceptible tobacco N. tabacum cv. NC 82 by the treatment of the bacterial culture filtrate, somewhat more by the pretreatment than by simultaneous treatment, probably by inhibiting the TMV transmission and translocation in the plants, showing negative serological, which responses in the viral detection by DAS-ELISA. TMV-inhibitory substances from P. putida JB-1 were water-soluble, stable to high temperature(even boiling), and to a wide range of pH. As proteinase K nullified their antiviral activity, the TMV inhibition activity of P. putida may be derived from proteinaceous materials. In electron microscopy, TMV particles treated with the JB-1 culture were shown to be shrunken with granule-like particles attached on them. All of these aspects suggest that P. putida JB-1 may be developed as a potential agent for the control of TMV.

Properties of biparental clones formed by spheroplast fusion of pseudomonas putida (원형질체 융합에 의한 pseudomonas putida의 biparental clones의 형성과 성질)

  • 이주실;이영원;이영록
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.198-204
    • /
    • 1987
  • Biparental clones and recombinant clones were obtained by spheroplast fusion of Pseudomonas putida KU218R-3 and P.putida KU428. Formation of the fusion product was the most effective when the Pseudomonas spheroplast mixture were treated with 40% plyethyleneglycol(PEG) 6000 for 10min at room temperature, The fusants which selected by indirect method were obtained at an average frequency of 10.8%. Most of the fusants were biparental clones (10.4%) and the recombinant clones were produced in low yield (0.42%). Fusants, at the frequency of 4% were obtained without PEG 6000, which shows that fusion is not strictly dependant on PEG. The stability of fusants were examined. Most of the biparental clones were segregated to parental form amd late recombinants were formed on further propagation of biparental clone but the recombinant clones were nery stable.

  • PDF

Effect of gcl, glcB, and aceA Disruption on Glyoxylate Conversion by Pseudomonas putida JM37

  • Li, Xuan Zhong;Klebensberger, Janosch;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1006-1010
    • /
    • 2010
  • Pseudomonas putida JM37 metabolized glyoxylate at a specific rate of 55 g/g dry biomass/day. In order to investigate their role, three genes encoding enzymes that are potentially involved in the conversion of glyoxylate were disrupted; namely, tartronate semialdehyde synthase (gcl), malate synthase (glcB), and isocitrate lyase (aceA). Strains with transposon insertion in either of these genes were isolated from a 50,000 clone library employing a PCR-guided enrichment strategy. In addition, all three double mutants were constructed via targeted insertion of a knock-out plasmid. Neither mutation of gcl, glcB, and aceA nor any of the respective double mutations influenced glyoxylic acid conversion, indicating that P. putida JM37 may possess other enzymes and pathways for glyoxylate metabolism.

Effect of Hydrogen Sulfide Removal by Biofilter Seeded with Pseudomonas putida B2 (Pseudomonas putida B2가 접종된 Biofilter의 황화수소제거 효과)

  • Yoon, Ji-Yong;Lee, Soo-Choul;Kwon, Il;Sung, Chang-Keun
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.286-289
    • /
    • 2001
  • A beterotrophic Pseudomonas putida B2 was used to treat of hydrogen sulfide containing gas. The experimental approach involved operating two indentical bench-scale biofilters with media consisting of a mixture of peatmoss, perlite and granular activated carbon(GAC). One column was seeded with Pseudomonas putida B2 and the other was left unseeded. The biofilter was operated for 16 days under EBRT for 20-40 sec, at a temperature of 25-30$^{\circ}C$ and a hydrogen sulfide concentration of 40-190 ppm. The biofilter inocculated with P.putida B2 exhibited high hydrogen sulfide removal efficiency, average of 95%, at a gydrogen sulfide concentration of 40-190 ppm (flow rate 3.6 L/min). However, at a shock loading of 190 ppm the biofiter showed a removal efficiency of 78.9% and the control only showed a removal efficiency of 31.6%. The critical load of this biofilter was 14.83 g/㎥hr, and the critical load of the control column was 4.93 g/㎥hr. These results suggest that P. putida B2 has the potential to be used as a $H_2S$ removal agent in a biofilter.

  • PDF

Root Colonization by Beneficial Pseudomonas spp. and Bioassay of Suppression of Fusarium Wilt of Radish (유용 Pseudomonas 종의 근면점유와 무우 Fusarium시들음병의 억제에 관한 생물학적 정량)

  • Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.10-19
    • /
    • 1997
  • Fusarium wilt of radish (Raphanus sativus L.) is caused by the Fusarium oxysporum f. sp. raphani (FOR) which mainly attacks Raphanus spp. The pathogen is a soil-borne and forms chlamydospores in infected plant residues in soil. Infected pathogen colonizes the vascular tissue, leading to necrosis of the vascular tissue. Growth promoting beneficial organisms such as Pseudomonas fluorescens WCS374 (strain WCS374), P. putida RE10 (strain RE10) and Pseudomonas sp. EN415 (strain EN415) were used for microorganisms-mediated induction of systemic resistance in radish against Fusarium wilt. In this bioassy, the pathogens and bacteria were treated into soil separately or concurrently, and mixed the bacteria with the different level of combination. Significant suppression of the disease by bacterial treatments was generally observed in pot bioassy. The disease incidence of the control recorded 46.5% in the internal observation and 21.1% in the external observation, respectively. The disease incidence of P. putida RE10 recorded 12.2% in the internal observation and 7.8% in the external observation, respectively. However, the disease incidence of P. fluorescens WCS374 which was proved to be highly suppressive to Fusarium wilt indicated 45.6% in the internal observation and 27.8% in the external observation, respectively. The disease incidence of P. putida RE10 mixed with P. fluorescens WCS374 or Pseudomonas sp. EN415 was in the range of 10.0-22.1%. On the other hand, the disease incidence of P. putida RE10 mixed with Pseudomonas sp. EN415 was in the range of 7.8-20.2%. The colonization by FOR was observed in the range of $2.4-5.1{\times}10^3/g$ on the root surface and $0.7-1.3{\times}10^3/g$ in the soil, but the numbers were not statistically different. As compared with $3.8{\times}10^3/g$ root of the control, the colonization of infested ROR indicated $2.9{\times}10^3/g$ root in separate treatments of P. putida RE10, and less than $3.8{\times}10^3/g$ root of the control. Also, the colonization of FOR recorded $5.1{\times}10^3/g$ root in mixed treatments of 3 bacterial strains such as P. putida RE10, P. fluorescens WCS374 and Pseudomonas sp. EN415. The colonization of FOR in soil was less than that of FOR in root part. Based on soil or root part, the colonization of ROR didn't indicate a significant difference. The colonization of introduced 3 fluorescent pseudomonads was observed in the range of $2.3-4.0{\times}10^7/g$ in the root surface and $0.9-1.8{\times}10^7/g$ in soil, but the bacterial densities were significantly different. When growth promoting organisms were introduced into the soil, the population of Pseudomonas sp. in the root part treated with P. putida RE10 was similar in number to the control and recorded the low numerical value as compared with any other treatments. The population density of Pseudomonas sp. in the treatment of P. putida RE10 indicated significant differences in the root part, but didn't show significant differences in soil. The population densities of infested FOR and introduced bacteria on the root were high in contrast to those of soil. P. putida RE10 and Pseudomonas sp. EN415 used in this experiment appeared to induce the resistance of the host against Fusarium wilt.

  • PDF

PCBs에 오염된 연안해양 Microcosm에서의 PCBs분해 유전자조작 Pseudomonas putida AC30(pMFB2)의 동태해석

  • 민만기;천단선일랑;고전간길;고천겸개
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.193-198
    • /
    • 2000
  • PCBs를 분해하는 bphABC유전자를 plasmid vactor pMFB2에 유전자조작한 Pseudomonas putida AC30(pMFB2)를 PCBs에 오염된 연안해역의 해수와 저니로 만든 microcosm에 도입한 결과, 각각 도입 4일과 7일만에 사멸하였다. 그러나, 도입한 P. putida AC30(pMFB2)는 사멸하였지만, 연안해수와 저니 microcosm에서 plasmid pMFB2가 전이한 토착미생물이 검출되었다. 도입한 P. putida AC30(pMFB2)의 생잔실패의 원인을 분석한 결과 공경 0.2$\mu\textrm{m}$의 filter를 통과하는 물질과 생물이 가장 크게 영향을 미치는 것으로 나타났다. 유전자조작 P. putida AC30(pMFB2)의 도입과 bphABC유전자의 토착미생물로의 전이에 따른 토착미생물군집에 미치는 영향을 개체수 변동으로 조사한 결과, 토착미생물 군집에 미치는 영향은 보이지 않았다. P. putida AC30(pMFB2)의 도입에 의한 PCBs의 생분해성을 분석하였다. 그러나, 도입한 유전자조작 균주가 생잔에 실패함으로써 잔류하고 있는 PCBs의 농도변화는 보이지 않았다.

  • PDF

Degradation of BTEX and Trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4 (Pseudomonas putida F1과 Burkholderia cepacia G4에 의한 BTEX, trichloroethylene 분해)

  • 이승우;이준명;장덕진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.561-568
    • /
    • 1998
  • Two cometabolic trichloroethylene (TC) degraders, Pseudomonas putida F1 and Burkholderia (Pseudomonas) cepacia G4, were found to catabolize phenol, benzene, toluene, and ethylbenzene as carbon and energy sources. Resting cells of P. putida F1 and B. cepacia G4 grown in the presence of toluene and phenol, respectively, were able to degrade not only benzene, toluene and ethylenzene but also TCE and p-xylene. However, these two strains grown in the absence of toluene or phenol did not degrade TCE and p-xylene. Therefore, it was tentatively concluded that cometabolic degradation of TC and p-xylene was mediated by toluene dioxygenase (P. putida F1) or toluene-2-monooxygenase (B. cepacia G4). Maximal degradation rates of BTEX and TCE by toluene- and phenol-induced resting cells of P. putida F1 and B. cepacia G4 were appeared to be 4-530 nmol/(min$.$mg cell protein) when a single compound was solely served as a target substrate. In case of double substrates, the benzene degradation rate by P. putida F1 in the presence of toluene was decreased up to one seventh of that for the single substrate. TCE degradation rate was also linearly decreased as toluene concentration increased. On the other hand, toluene degradation rate was enhanced by benzene and TCE. For B. cepacia G4, degradation rates of TCE and toluene increased 4 times in the presence of 50 ${\mu}$M phenol. From these results, it was concluded that a degradation rate of a compound in the presence of another cosubstrate(s) could not be predicted by simply generalizing antagonistic or synergistic interactions between substrates.

  • PDF

Partial purification and some properties of Guanosine Triphosphate Cyclohydrolase from Pseudomonas putida : GTP cyclohydrolase from pseudomonas (Pseudomonas putida에서 부분정제한 Guanosine Triphosphate Cyclohydrolase 의 특성에 관한 연구)

  • 김완기;임정빈
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.201-209
    • /
    • 1982
  • An enzyme, named GTP cyclohydorlase, that catalizes the hydrolytic removal of carbon No.S of GTP has been partially purified from extracts of Pseudomonas putida (IAM 1506). The enzyme exists in two molecuar weight forms : a high molecular weight form (150,000) and a low molecular weight from (40,000). The high molecular weight form has been purified 25-fold. Some of the properties of the enzyme are as follows : It functions optimally at pH8.0, and at $52^{\circ}C$. The Km value for GTP is $20{\mu}M$. Divalent cations $(Cd^{2+}\;and\;Hg^{2+})$ 2+/) at a concentration of 5mM inhibit completely the enzyme activity. No metal ion including $Mg^{2+}$ is needed for the catalysis. The enzyme is heat labile ; its half at $57^{\circ}C$ is 1.5 min. Of a number of nucleotides tested, only GDP was used to any extent as substrbte in place of GTP. One of the products of the enzyme is determined to be a dihydro-neopterin compound.

  • PDF