• Title/Summary/Keyword: pseudodynamic test

Search Result 18, Processing Time 0.017 seconds

Analysis ana Correction of Experimental Errors in Pseudodynamic Test (유사동적실험 오차의 분석 및 보정)

  • 김남식;이상순;정우정;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.95-101
    • /
    • 1992
  • The Pseudodynamic test is a new experimental technique for simulating the earthquake response of structures or structural components in the time domain. It is especially efficient for testing structures that are too large, heavy or strong to be tested on a shaking table. But the obtained responses in the Pseudodynamic test are distorted by the experimental errors inevitably during control and measurement procedures. The studies are to investigate the effects of the experimental errors on the Pseudodynamic responses and apply a correction method to the Pseudodynamic testing algorithm. It is shown that the corrected responses using the Equivalent Energy Compensation Method are in a good correlation with the theoretical ones. Thus, the corrected Pseudodynamic responses could be reliable for evaluating the seismic performance of structural systems.

  • PDF

Unconditional stability for explicit pseudodynamic testing

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.411-428
    • /
    • 2004
  • In this study, a newly developed unconditionally stable explicit method is employed to solve momentum equations of motion in performing pseudodynamic tests. Due to the explicitness of each time step this pseudodynamic algorithm can be explicitly implemented, and thus its implementation is simple when compared to an implicit pseudodynamic algorithm. In addition, the unconditional stability might be the most promising property of this algorithm in performing pseudodynamic tests. Furthermore, it can have the improved properties if using momentum equations of motion instead of force equations of motion for the step-by-step integration. These characteristics are thoroughly verified analytically and/or numerically. In addition, actual pseudodynamic tests are performed to confirm the superiority of this pseudodynamic algorithm.

MODIFIED POSTERIOR TIME-STEP ADJUSTMENT TECHNIQUE FOR MDOF SYSTEM IN SUBSTRUCTURING PSEUDODYNAMIC TEST (부분구조 유사동적법에 있어 다자유도 시스템에 대한 수정 시간증분 조정기법)

  • 이원호;강정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.473-480
    • /
    • 1998
  • The substructuring pseudodynamic test is a hybrid testing method consisting of a numerical simulation of the earthquake response of an analytical model and a loading test of a specimen. The substructuring pseudodynamic testing technique has been applied to various seismic experiments since it has advantages over the shaking table test to study dynamic behaviors of relatively large scale structures. However, experimental errors are inevitable in substructuring pseudodynamic testing. Some of these errors can be monitored during the test, but, due to limitations in control system, they cannot be eliminated. For example, one cannot control exactly the displacements that are actually imposed on the structures at each time step. This paper focuses on a technique to minimize the cumulative effect of such control errors for MDOF system. For this purpose, the modified posterior adjustment of the time increment from a target value $\Delta$t$_{n}$ to an adjusted value is performed to minimize the effect of the control errors for MDOF system.for MDOF system.

  • PDF

Assessment of the Seismic Capacity of Structure Using Pseudodynamic Test (유사동적 실험법을 이용한 구조물의 내진 성능 평가)

  • 김대곤;김대영;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • It is necessary to conduct researches about seismic design and analysis to protect various structures from earthquakes which are one of the most destructive natural disaster to human civilization. To assess the seismic capacity of structure, not only analytical but also experimental researches are important. Currently, pseudodynamic test known as computer-actuator on-line test is one of the available test methods to assess seismic capacity of structure without using shaking table. In this paper seismic capacity of simple one-degree of freedom structure was estimated by pseudodynamic test. Good agreement between the experimental and analytical results was obtained. Better results would be obtained when more sophisticated measuring and controlling instruments are available.

  • PDF

Experimental Techniques for Evaluating Seismic Performance of Base-Isolated Structure (기초격리된 구조물의 내진성능평가를 위한 실험기법)

  • 윤정방;정우정;김남식;김두훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.45-58
    • /
    • 1997
  • This paper describes a series of shaking table and pseudodynamic tests for evaluation of seismic performance of base-isolated structures subjected to various seismic earthquake inputs. The main objectives of this study are : (1) evaluation of the effectiveness of base-isolation systems for low-rise structures against severe seismic loads through shaking table tests, (2) verification of the substructuring pseudodynamic test method for the base-isolated structures in comparison with the shaking table test results. In the shaking table test, a quarter scaled three-story structure base-isolated by laminated rubber bearings is tested. In the pseudodynamic test, only the laminated rubber bearing s are tested using the substructuring technique, while the concurrent seismic responses of the superstructure are computed using on-line numerical integration. Comparison with the shaking table test results indicates that the substructuring pseudodynamic test method is very effective for determining the dynamic responses of the base-isolated structure.

  • PDF

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

IMPLEMENTATION OF PSEUDODYNAMIC TEST METHOD

  • Yi, Waon-Yo;Lee, Li-Hyung-;Lee, Yong-Taeg-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.89-94
    • /
    • 1992
  • 구조물의 비탄성 지진응답을 예측하기 위하여 수행되는 진동대 실험(Shaking Table Test)과 준정적 실험(Quasic-Static Test)의 각 장점을 조합한 유사동적 실험(Pseudodynamic Test)은 실물 크기 구조물의 비탄성 거동온 파악하는 데 널리 사용되고 있다. 이러한 유사동적 실험에서는 구조물에 변위이력의 정확한 가력 및 측정이 가장 중요하다. 측정된 변위와 계산된 변위의 차를 조절오차(Control Error)라고 하며, 임의의 단계에서 측정된 변위를 조정하므로서 그 다음 단계의 조절오차 및 측정오차(Measurement Error)를 감소시킬 수 있다. 따라서 개선된 유사동적 실험의 알고리즘을 얻을 수 있다.

  • PDF

Implicit Time Integration Scheme for Real-Time Hybrid Test System (실시간 하이브리드 실험 시스템을 위한 Implicit 시간적분법)

  • Jung, Rae-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.99-106
    • /
    • 2006
  • The Real-Time Hybrid Test system presented in this paper is based on the pseudodynamic test method, and it combines physical testing with model-based simulation. The system is designed to achieve a rate of loading that is significantly higher than that of a conventional pseudodynamic test approaching the real-time response of a structure subjected to earthquake loads. To provide robust computation environment for the analysis of many degree-of-freedom structures, the system adopts an implicit time integration scheme in the model-based simulation. This paper presents an overview of the developed system and numerical simulations that were conducted to evaluate the performance of the computation scheme adopted here. Results of these studies have demonstrated the good performance of the computation scheme for real-time multiple-degree-of-freedom tests.

PSRUDODYNAMIC TEST METHOD

  • 이승준
    • Computational Structural Engineering
    • /
    • v.2 no.3
    • /
    • pp.30-34
    • /
    • 1989
  • 이 글에서 Pseudodynamic(PSD) Test Method의 발전과정, 여러 구조 시스템에의 적용 예, 이 방법이 갖고 있는 문제점들, 그리고 앞으로 이 방법을 발전시킬 수 있는 분야 등을 기술하였다. 이에 근거하여 PSD Test Method가 구조물의 지진에 대한 거동을 시뮬레이션 할 수 있는 Technique임을 알 수 있으며 따라서 앞으로의 발전을 위해 많은 연구가 필요한 분야이다.

  • PDF

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.