• Title/Summary/Keyword: pseudo-second-order reaction

Search Result 120, Processing Time 0.022 seconds

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Kinetic Studies on the Reaction of the Homobimetallic Anion, M+5-MeCp)Mn(CO)2Mn(CO)5-(M+=Na+, PPN+) with Allyl Chloride (동종이핵착물인 M+5-MeCp)Mn(CO)2Mn(CO)5-(M+=Na+, PPN+)와 염화알릴간의 반응에 대한 반응속도론적 연구)

  • Park, Yong-Kwang;Yun, Dong-Shin
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.473-482
    • /
    • 2004
  • The homobimetallic anion, $M^+({\eta}^5-MeCp)Mn(CO)_2Mn(CO)_5^-(M^+=Na^+,\;PPN^+)$was disrupted by CH2CHCH2Cl in THF at various temperatures ($20^{\circ}C~50^{\circ}C$) under the pseudo 1st order reaction conditions where excess of allyl chloride was employed under a nitrogen atmosphere. This homobimetallic anion seems to be involved in a concerted reaction mechanism in which a four-centered transition state is proposed. After undergoing the transition state, this reaction eventually leads to (MeCp)Mn$(CO)_3$ on addition of CO and $({\eta}^1-allyl)Mn(CO)_5$, respectively. However, in case of $Na^+$ analog, $Na^+$ may play a novel counter ion effect on the disruption reaction either by transferring one terminal CO from the $Mn(CO)_5$ moiety on to the $({\eta}^5-MeCp)Mn(CO)_2$of the corresponding homobimetallic complex, eventually resulting in $({\eta}^5-MeCp)Mn(CO)_3$ or through the interaction between $Na^+$ and the leaving group (Cl) of allyl chloride. This reaction is of overall second order with respect to homobimetallic complex with the activation parameters (${\Delta}H^{\neq}=17.15{\pm}0.17kcal/mol,\;{\Delta}S^{\neq}=-9.63{\pm}0.10$ e.u. for $Na^+$ analog; ${\Delta}H^{\neq}=22.13{\pm}0.21 kcal/mol,\;{\Delta}S^{\neq}=9.74{\pm}0.19$ e.u. for $PPN^+$ analog reaction).

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.

Characteristics and Parameters for Adsorption of Carbol Fuchsin Dye by Coal-based Activated Carbon: Kinetic and Thermodynamic (석탄계 활성탄에 의한 Carbol Fuchsin의 흡착 특성과 파라미터: 동력학 및 열역학)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.283-289
    • /
    • 2021
  • Adsorption characteristics of carbol fuchsin (CF) dye by coal-based activated carbon (CAC) were investigated using pH, initial concentration, temperature and contact time as adsorption variables. CF dissociates in water to have a cation, NH2+, which is bonded to the negatively charged surface of the activated carbon in the basic region by electrostatic attraction. Under the optimum condition of pH 11, 96.6% of the initial concentration was adsorbed. Isothermal adsorption behavior was analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Langmuir's equation was the best fit for the experimental results. Therefore, the adsorption mechanism was expected to be adsorbed as a monolayer on the surface of activated carbon with a uniform energy distribution. From the evaluated Langmuir's dimensionless separation coefficients (RL = 0.503~0.672), it was found that CF can be effectively treated by activated carbon. The adsorption energies determined by Temkin and Dubinin-Radushkevich models were E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. Therefore, the adsorption process was physical (E < 20 J/mol, B < 8 kJ/mol). The experimental result of adsorption kinetics fit better the pseudo second order model. In the adsorption reaction of CF dye to CAC, the negative free energy change increased as the temperature increased. It was found that the spontaneity also increased with increasing temperature. The positive enthalpy change (40.09 kJ/mol) indicated an endothermic reaction.

Kinetic and Statistical Analysis of Adsorption and Photocatalysis on Sulfamethoxazole Degradation by UV/$TiO_2$/HAP System (UV/$TiO_2$/HAP 시스템에서 Sulfamethoxazole의 흡착과 광촉매반응에 대한 동역학적 및 통계적 해석)

  • Chun, Suk-Young;Chang, Soon-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Antibiotics have been considered emerging compounds due to their continuous input and persistence in environment. Due to the limited biodegradability and widespread use of these antibiotics, an incomplete removal is attained in conventional wastewater treatment plants and relative large quantities are released into the environment. In this study, it was determined the adsorption and photocatalysis kinetics of antibiotics (Sulfamethoxazole, SMX) with various catalyst (Titanium dioxide; $TiO_2$, Hydroxyapatite; HAP) conditions under UV/$TiO_2$/HAP system. In addition, the statistical analysis of response surface methods (RSM) was used to determine the effects of operating parameters on UV/$TiO_2$/HAP system. $TiO_2$/HAP adsorbent were found to follow the pseudo second order reaction in the adsorption. In the result of applied intrapaticle diffusion model, the constants of reaction rate were $TiO_2$=$0.064min^{-1}$, HAP=$0.2866min^{-1}$ and $TiO_2$/HAP=$0.3708min^{-1}$, respectively.The result of RSM, term of regression analysis in analysis of variance (ANOVA) showed significantly p-value (p<0.05) and high coefficients for determination values($R^2$=96.2%, $R^2_{Adj}$=89.3%) that allowed satisfactory prediction of second order regression model. And the estimated optimal conditions for Y(Sulfamethoxazole removal efficiency, %) were $x_1$(initial concentration of Sulfamethoxazole)=-0.7828, $x_2$(amount of catalyst)=0.9974 and $x_3$(reation time)=0.5738 by coded parameters, respectively. According to the result of intraparticle diffusion model and photocatalysis experiments, it was shown that the $TiO_2$/HAP was more effective system than conventional AOPs(advanced oxidation processes, UV/$TiO_2$ system).

Removal of Soluble Fe(II) using Reactive Media Coated with both Fe and Mn (철과 망간이 동시에 코팅된 반응성 매질을 이용한 용존 Fe(II) 제거)

  • Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Evaluation of the removal efficiencies of Fe(II) by reactive sand media coated with manganese (MCS), iron (ICS) and both of iron and manganese (IMCS) was investigated as functions of solution pH ranging from 2 to 9, reaction time and concentration of Fe(II) in a batch reactor using each reactive medium and additional oxidants such as $KMnO_4$ and NaOCl. When only Fe(II) was present in solution without any reactive medium, removal of Fe(II) was quite low below pH 5 due to a slow oxidation of Fe(II) and/or negligible precipitation but greatly increased above pH 5 due to a rapid oxidation of Fe(II) and subsequent precipitation of oxidized Fe species. ICS showed negligible efficiency on the removal of Fe(II) through adsorption. However, an efficient removal of Fe(II) was observed at low solution pH in the presence of IMCS or MCS through rapid oxidation and subsequent precipitation. Removal efficiency of Fe(II) by IMCS in the presence or absence of NaOCl was quite similar. Removal rate of Fe(II) by IMCS and additional oxidants gradually increased as the solution pH increased. From the kinetic experiments, removal pattern of Fe(II) was better described by pseudo-second-order equation than pseudo-first-order equation. A rapid removal of Fe(II) using IMCS in the presence of $KMnO_4$ was observed in the first 10 min. The initial removal rate of Fe(II) using $KMnO_4$ was 14,286 mg/kg hr. In case of using NaOCl, the removal of Fe(II) occurred rapidly in the first 6 hrs and then reached the near-equilibrium state. Removal of Fe(II) on IMCS was well expressed by Langmuir isotherm and the maximum removal capacity of Fe(II) was calculated as 1,088 mg/kg.

Adsorption Characteristics and Parameters of Acid Black and Quinoline Yellow by Activated Carbon (활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터)

  • Yi, Kyung Ho;Hwang, Eun Jin;Baek, Woo Seung;Lee, Jong-Jib;Dong, Jong-In
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.186-195
    • /
    • 2020
  • The isothermal adsorption, dynamic, and thermodynamic parameters of Acid black (AB) and Quinoline yellow (QY) adsorption by activated carbon were investigated using the initial concentration, contact time, temperature, and pH of the dyes as adsorption parameters. The adsorption equilibrium data fits the Freundlich isothermal adsorption model, and the calculated Freundlich separation factor values found that activated carbon can effectively remove AB and QY. Comparing the kinetic data showed that the pseudo second order model was within 10% error in the adsorption process. The intraparticle diffusion equation results were divided into two straight lines. Since the slope of the intraparticle diffusion line was smaller than the slope of the boundary layer diffusion line, it was confirmed that intraparticle diffusion was the rate-controlling step. The thermodynamic experiments indicated that the activation energies of AB and QY were 19.87 kJ mol-1 and 14.17 kJ mol-1, which corresponded with the physical adsorption process (5 ~ 40 kJ mol-1). The adsorption reaction was spontaneous because the free energy change in the adsorption of AB and QY by activated carbon was negative from 298 to 318 K. As the temperature increased, the free energy value decreased resulting in higher spontaneity. Adsorption of AB and QY by activated carbon showed the highest adsorption removal rate at pH 3 due to the effect of anions generated by dissociation. The adsorption mechanism was electrostatic attraction.

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach (반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.723-730
    • /
    • 2017
  • The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

Chromium(VI) Removal from Aqueous Solution using Acrylic Ion Exchange Fiber (아크릴계 이온교환섬유를 이용한 수중 크롬(VI) 제거)

  • Nam, Aram;Park, Jeong-Ann;Do, Taegu;Choi, Jae-Woo;Choi, Ungsu;Kim, Kyung Nam;Yun, Seong-Taek;Lee, Sanghyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.112-117
    • /
    • 2017
  • Ion exchange fiber, PADD was synthesized by the reaction between PAN based acrylic fiber and DETA with $AlCl_3{\cdot}6H_2O$, and was analyzed by FT-IR and SEM to investigate its characteristics. The experimental results of Cr(VI) removal by PADD were better fitted with Langmuir adsorption isotherm, and the maximum uptake value ($Q_{max}$) was calculated to be 6.93 mmol/g. The kinetic data can be well described by Lagergen pseudo-second order rate model. The Cr(VI) adsorption capacity of PADD was 4.11 mmol/g at pH 2, which shows the effect of pH changes on the removal of Cr(VI). The adsorption selectivity of Cr(VI) was higher than phosphate and As(V). Total ion exchange capacity of PADD was 4.70 mmol/g, which was measured by acid-base back titration.

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.