• Title/Summary/Keyword: pseudo-first-order reaction

Search Result 196, Processing Time 0.029 seconds

Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes (오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구)

  • Jung, Yeon-Jung;Oh, Byung-Soo;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

Chemical Modification of Porcine Brain myo-Inositol Monophosphate Phosphatase by N-bromosuccinimide

  • Lee, Byung-Ryong;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Ahn, Yoon-Kyung;Yoon, Byung-Hak;Kwon, Hyeok-Yil;Kwon, Oh-Shin;Choi, Soo-Young
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.294-298
    • /
    • 1999
  • Myo-inositol monophosphate phosphatase is a key enzyme in the phosphoinositide cell-signaling system. Incubation of myo-inositol monophosphate phosphatase from porcine brain with N-bromosuccinimide (NBS) resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order kinetics with the second-order rate constant of $3.8{\times}10^3\;M^{-1}min^{-1}$. The time course of the reaction was significantly affected by the substrate myo-inositol-1-phosphate, which afforded complete protection against the loss of catalytic activity. Spectrophotometric studies indicated that about one oxindole group per molecule of enzyme was formed following complete loss of enzymatic activity. It is suggested that the catalytic function of myo-inositol monophosphate phosphatase is modulated by the binding of NBS to a specific tryptophan residue at or near the substrate binding site of the enzyme.

  • PDF

Nucleophile Effects for the Reactions of Nucleophilic Substitution by Pressure and Temperature (친핵성치환반응에서 압력과 온도변화에 따른 친핵체 효과)

  • Kim, Se-Kyong;Choi, Sung-Yong;Ko, Young-Shin
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.461-466
    • /
    • 2004
  • Kinetics for the nucleophiles have been studied under high vacuum and high pressures in various temperatures. Pseudo-first order rate constants, second order rate constants, thermodynamic parameters and Hammett ${\rho}$-values are determined. The values of ${\Delta}V^{\neq},\;{\Delta}{\beta}^{\neq}\;and\;{\Delta}S^{\neq}$are all negative. The Hammett r-values are negative for the nucleophile (${\rho}$x) over the pressure range studied. The results of kinetic studies for pressure and nucleophilet show that these reactions proceed in typical $S_N2$ reaction mechanism and change of mechanism.

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Song, M.S.;Lee, B.R.;Jang, S.H.;Cho, S.W.;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.75-75
    • /
    • 1995
  • Succinic semialdehyde reductase, one of key enzyme of GABA shunt in CNS, is inactivated by o-phthalaldehyde, The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 28 M$\^$-1/s$\^$-1/ at pH 7.4 and 25$^{\circ}C$. The absorption spectrum(λ$\_$max/=377nm), fluorescence exitation(λ$\_$max/=340nm) and fluorescence emission spectra (λ$\_$max/=409nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residues about 3${\AA}$ apart. The substrate, succinic semialdehyde, did not protect the enzymatic activity against inactivation, whereas the coenzyme, NADPH, protected against o-phthalaldehyde induced inactivation of the enzyme. About 1 isoindole group per moi of the enzyme was formed following complete loss of the enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in reaction with o-phthalaldehyde more likely residues at or near the coenzyme binding site.

  • PDF

Synthesis of $TiO_2$ Powders by the Hydrolysis of Titanium n-Butoxide and Reaction Mechanism (Titanium n-Butoxide의 가수분해에 의한 $TiO_2$ 분말 합성과 반응 메커니즘)

  • Park, J.K.;Myung, J.J.;Chung, Y.S.;Kyong, J.B.;Kim, H.K.
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.505-510
    • /
    • 1999
  • $TiO_2$ powders were prepared via hydrolysis of titanium n-butoxide in n-butanol and hydrolysis mechanism of titanium n-butoxide was studied using UV-Vis spectrometer. Hydrolysis reactions were controlled to proceed to pseudo-first order reaction in the presence of excess water. The phases of $TiO_2$ powders, prepared under the these conditions, were identified by XRD and reaction rates were calculated by Gugggenheim method. Prepared powders were noncrystalline states in their initial stage of formation but transformed to crystalline rutile structure by heating. Reaction mechanism of titanium n-butoxide was proposed as Interchange-Associative(Ia) mechanism, based on the data of n-value and termodynamic parameters which were determined from the rate constants.

  • PDF

Synthetic Musk Compounds Removal Using Biological Activated Carbon Process in Drinking Water Treatment (정수처리용 생물활성탄 공정에서의 인공 사향물질의 제거 특성)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Dong-Hoon;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2012
  • In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons) and anthracite, empty bed contact time (EBCT) and water temperature on the removal of MK, HHCB and AHTN in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the synthetic musk compounds (SMCs) removal in BAC columns. The kinetic analysis suggested a first-order reaction model for MK, HHCB and AHTN removal at various water temperatures (5, 15 and $25^{\circ}C$). The pseudo-first-order biodegradation rate constants and half-lives were also calculated for MK, HHCB and AHTN removal at 5, 15 and $25^{\circ}C$. The pseudo-first-order biodegradation rate constants and half-lives of MK, HHCB and AHTN ranging from 0.0082 $min^{-1}$ to 0.4452 $min^{-1}$ and from 1.56 min to 84.51 min could be used to assist water utilities in designing and operating BAC filters for SMCs removal.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

The study for photodegradation of diazinon using $TiO_2$ photocatalyst ($TiO_2$ 광촉매를 처리한 Diazinon의 광분해에 관한 연구)

  • Ryu, Seong-Pil;O, Yun-Geun
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • Considerable interest has been shown in recent years towards utilizing $TiO_2$ particles as a photocatalyst in the degradation of harmful organic contaminants. In this study, photocatalytic degradation of diazinon which is extensively used as a pesticide in the agriculture field, has been investigated with UV-illuminated $TiO_2$ weight, UV wavelength, pH of the solution. Photodegradation rate increased with decreasing initial concentration of diazinon and with increasing pH of the solution. Photodegradation rate increased with increasing $TiO_2$ weight, but was nearly the same at $TiO_2$ weight of 1g/$\ell$, 2 g/$\ell$, i.e., for initial diazinon concentratin of 5 mg/$\ell$. UV wavelength affecting on the degradation rate of diazinon decreased in the order of 254 nm>312 nm> 365 nm. For $TiO_2$ weight of 1 g/$\ell$and initial diazinon concentration of 5 mg/$\ell$, the photodegradation removal of diazinon was 100% after 130 min in the case of 254 nm, but 95% in the case of 312 nm, and 84% in the case of 365nm, after 180 min. The photodegradation of diazinon followed a first order or a pseudo - first order reaction rate. For initial diazinon concentration of 5 mg/$\ell$, the rate constants(k) in UV and $TiO_2$(1 g/$\ell$)/UV system were $0.006 min^{-1} and 0.0252 min^{-1} at 254 nm, 0.0055 min^{-1} and 0.0104 min^{-1} at 312 nm, and 0.004 min^{-1}$ at 365 nm respectively.

  • PDF

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted Benzoates with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Seo, Jin-A;Kim, Song-I;Hong, Yeon-Ju;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.303-308
    • /
    • 2010
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl benzoate (5a), 4-nitrophenyl 4-methoxybenzoate (5b), and 4-nitrophenyl 4-hydroxybenzoate (5c) with alkali metal ethoxides, $EtO^-M^+$ ($M^+=Li^+$, $Na^+$ and $K^+$) in anhydrous ethanol (EtOH) at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [$EtO^-M^+$] exhibit upward curvatures in all cases, indicating that $M^+$ ions catalyze the reactions and ionpaired $EtO^-M^+$ species are more reactive than dissociated $EtO^-$. Second-order rate constants for reactions with dissociated $EtO^-$ and ion-paired $EtO^-M^+$ (i.e., $k_{EtO^-}$ and $k_{EtO^-M^+}$, respectively) have been calculated from ion-pair treatment for the reactions of 5a and 5b. However, such ion-pair treatment has failed to determine $k_{EtO^-}$ and $k_{EtO^-M^+}$ values for the reactions of 5c. It has been concluded that reactions of 5a and 5b are catalyzed by one metal ion, which increases electrophilicity of the reaction center through coordination on the carbonyl oxygen. In contrast, reactions of 5c have been suggested to involve two metal ions, i.e., the one coordinated on the carbonyl oxygen increases the electrophilicity of the reaction center while the other one associated on the phenoxy oxygen decreases the charge repulsion between the anionic reagents (i.e., $EtO^-$ and deprotonated 5c). It has been found that the rate equation derived from the mechanism involving two metal ions fits nicely to the kinetic results obtained for the reactions of 5c.