Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.
The kinetics and mechanism of reduction of Cu(II) with an excess D-penicillamine have been examined at pH = 6.2 and 0.60M in ionic strength. The reaction at the initial stage is biphasic with a rapid complexation process to give "red" transient complex of $[Cu(II)(pen)_2]^2$- that is partially reduced to another transient "brown" intermediate. The "brown" intermediate is finally reduced to diamagnetic "yellow" complex, $[Cu(I)(Hpen)]_n$. The final reduction process is pseudo-first order in ["brown" transient] disappearance $with {\kappa} = {{\kappa}_{3a} + {\kappa}_{3b}[pen]^{2-}},$ where ${\kappa}_{3a} = (5.0{\pm}0.8){\times}10^{-3}sec^{-1}$ and ${\kappa} = (0.14{\pm}0.02) M^{-1}sec^{-1}$ at $25^{\circ}C$. The activation parameters for the $[H_2pen]$-independent and $[H_2pen]$-dependent paths are ${\Delta}H^{\neq} = (52{\pm}5)kJmol^{-1},$ and ${\Delta}S^{\neq} = ( - 27{\pm}3)JK^{-1}mo^{l-1},$ and ${\Delta}H^{\neq} = (56{\pm}2)kJmol^{-1}$ and ${\Delta} S^{\neq} = ( - 18{\pm}0.7)JK^{-1}mol^{-1}$ respectively. The nature of "brown" intermediate is not clearly identified, but this intermediate seems to be in the mixed-valence state, judging from the kinetic and spectroscopic informations.
Pseudo-first order rate constants $k_{obs}$ were determined for the reactions of naphthalenesulfonyl chlorides (1-NSC and 2-NSC) and anilines. The second order rate constant $k_2$ and third order catalytic $k_3$ were then determined from $k_{obs}$. For 1-NSC peri-hydrogen effect was observed. The large Brønsted ${\beta}$ and large negative slopes ${\rho}$ for the Hammett plots were obtained. These results with the unsually low values of activation parameters were consistent with the $S_AN$-elimination mechanism, but these can be equally well interpreted with the associative $S_N2$mechanism.
New functional surfactant, N,N-dimethyl-N-dodecyl-N-(2-methyl benzimidazoyl) ammonium chloride(DDBAC) having benzimidazole(BI) functional group have been synthesized and the critical micellar concentration of DDBAC measured by surface tentiometry and electric conductivity method was $8.9{\times}10^{-4}M$. Micellar effects in DDBAC functional surfactant solution on the hydrolysis of p-nitrophenylacetate(p-NPA), p-nitro-phenylpropionate(p-NPP) and p-nitrophenylvalerate(p-NPV) were observed with change of various pH (Tris-buffer). The pseudo first rate constants of hydrolysis of p-NPA, p-NPP and p-NPV in optimum concentration of DDBAC solution increase to about 160, 280 and 600 times, respectively, as compared with those of aqueous solution at pH 8.00(Tris-buffer). It is considered that benzimidazole functional moiety accelerates the reaction rates of hydrolysis because they act as nucleophile or general base. In optimum concentration of DDBAC solution, the rate constants of hydrolysis of p-NPP and p-NPV increase to about 1.5 and 3.0 times, respectively, as compared with that of p-NPA. It means that the more the carbon numbers of alkyl group of substrates, the larger the binding constants between DDBAC micelle and substrates are. To know the hydrolysis mechanism of p-NPCE(p-NPA, p-NPP and p-NPV), the deuterium kinetic isotope effects were measured in $D_2O$ solutions. Consequently the pseudo first order rate constant ratios in $H_2O$ and $D_2O$ solution, $k_{H_2O}/k_{D_2O}$, were about $2.8{\sim}3.0$ range. It means that the mechanism of hydrolysis were proceeded by nucleophile and general base attack in approximately same value.
Pseudo-first-order rate constants (kobs) have been determined for the nucleophilic substitution reactions of p-nitrophenyl diphenyl phosphinate (PNPDPP) with substituted phenoxides (XC6H4O - ) and butane-2,3-dione monoximate (Ox- ) in 0.1 M borate buffer (pH = 10.0) at 25.0 ${\pm}0.1^{\circ}C$. The kobs value increases sharply upon addition of cethyltrimethylammonium bromide (CTAB) to the reaction medium up to near 7 ${\times}$ 10-4 M CTAB and then decreases smoothly upon further addition of CTAB. The rate enhancement upon the addition of CTAB is most significant for the reaction with -O2CC6H4O- and least significant for the one with C6H5O- , indicating that the reactivity of these aryloxides in the presence of CTAB cannot be determined by the basicity alone. The strength of the interaction of these anionic aryloxides with the positively charged micellar aggregates has been suggested to be an important factor to determine the reactivity in the presence of CTAB. The kobs value for the reaction with Ox- increases also upon the addition of CTAB. However, the increase in the kobs value is much more significant for the reaction with Ox- than for the one with ClC6H4O- , indicating that Ox- is less strongly solvated than ClC6H4O- in H2O. The ${\alpha}-effect$ shown by Ox- in H2O has been attributed to the ground-state solvation difference between Ox- and ClC6H4O- .
Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.
A kinetic study on nucleophilic substitution reactions of 4-nitrophenyl X-substituted-benzoates (7a-i) with EtOK in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of pseudo-first-order rate constants ($k_{obsd}$) vs. [EtOK] curve upward. Dissection of $k_{obsd}$ into the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOK (i.e., $k_{EtO^-}$ and $k_{EtOK}$, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. Hammett plots for the reactions of 7a-i with the dissociated $EtO^-$ and ion-paired EtOK exhibit excellent linear correlations with ${\rho}_X$ = 3.00 and 2.47, respectively. The reactions have been suggested to proceed through a stepwise mechanism in which departure of the leaving-group occurs after the RDS. The correlation of the $k_{EtOK}/k_{EtO^-}$ ratio with the ${\sigma}_X$ constants exhibits excellent linearity with a slope of -0.53. It is concluded that the ion-paired EtOK catalyzes the reaction by increasing the electrophilicity of the reaction center rather than by enhancing the nucleofugality of the leaving group.
In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.
Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.
The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.