• Title/Summary/Keyword: pseudo symmetric manifold

Search Result 18, Processing Time 0.023 seconds

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand;Gazi, Abul Kalam
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.507-520
    • /
    • 2009
  • The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

Note on Almost Generalized Pseudo-Ricci Symmetric Manifolds

  • Baishya, Kanak Kanti
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.517-523
    • /
    • 2017
  • The purpose of the present paper is to study an almost generalized pseudo-Ricci symmetric manifold. The existence of such manifold is ensured by an example. Furthermore, having found, faulty example in [13], the present paper also attempts to construct a non-trivial example of an almost pseudo Ricci symmetric manifold.

ON A TYPE OF GENERALIZED SYMMETRIC MANIFOLDS

  • Kumar, Rajesh
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.921-934
    • /
    • 2019
  • The object of the present paper is to study generalized pseudo-projectively symmetric manifolds and Einstein generalized pseudo-projectively symmetric manifolds. Finally, the existence of generalized pseudo-projectively symmetric manifolds have been proved by two non-trivial examples.

On N(κ)-Contact Metric Manifolds Satisfying Certain Curvature Conditions

  • De, Avik;Jun, Jae-Bok
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.457-468
    • /
    • 2011
  • We consider pseudo-symmetric and Ricci generalized pseudo-symmetric N(${\kappa}$) contact metric manifolds. We also consider N(${\kappa}$)-contact metric manifolds satisfying the condition $S{\cdot}R$ = 0 where R and S denote the curvature tensor and the Ricci tensor respectively. Finally we give some examples.

PSEUDO SYMMETRIC AND PSEUDO RICCI SYMMETRIC WARPED PRODUCT MANIFOLDS

  • De, Uday Chand;Murathan, Cengizhan;Ozgur, Cihan
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.615-621
    • /
    • 2010
  • We study pseudo symmetric (briefly $(PS)_n$) and pseudo Ricci symmetric (briefly $(PRS)_n$) warped product manifolds $M{\times}_FN$. If M is $(PS)_n$, then we give a condition on the warping function that M is a pseudosymmetric space and N is a space of constant curvature. If M is $(PRS)_n$, then we show that (i) N is Ricci symmetric and (ii) M is $(PRS)_n$ if and only if the tensor T defined by (2.6) satisfies a certain condition.

INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS ADMITTING CERTAIN CONDITIONS

  • Eyasmin, Sabina;Baishya, Kanak Kanti
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.829-841
    • /
    • 2020
  • The object of the present paper is to study the invariant submanifolds of (LCS)n-manifolds. We study generalized quasi-conformally semi-parallel and 2-semiparallel invariant submanifolds of (LCS)n-manifolds and showed their existence by a non-trivial example. Among other it is shown that an invariant submanifold of a (LCS)n-manifold is totally geodesic if the second fundamental form is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly pseudo symmetric.