• 제목/요약/키워드: psbE

검색결과 20건 처리시간 0.019초

Cloning and Characterization of the psbEF Gene Encoding Cytochrome b-559 of the Panax ginseng Photosystem II Reaction Center

  • Lee, Won-Kyu;Park, Dae-Sung;Tae, Gun-Sik
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.189-195
    • /
    • 1999
  • From the Panax ginseng chloroplast, the psbE and psbF genes, encoding the $\alpha$- and $\beta$-subunits of cytochrome b-559 of the photosystem II reaction center, respectively, were cloned and characterized. The psbE and psbF genes were composed of 252 and 117 nucleotides, respectively. The deduced amino acid sequence of the $\alpha$-subunits showed 95%, 93%, and 91% homology to monocots, dicots, and liverwort, respectively, whereas the $\beta$-subunits showed approximately 98% to 95% homology to the same species. Southern blot analysis revealed that a single copy of the psbEF gene exists in the chloroplast plastid. Northern blot analysis indicated that the psbE and psbF genes are cotranscribed as a polycistron.

  • PDF

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk;Hwang, Eun-Young;Jin, Gyoung-Ean;Park, So-Young;Zulfugarov, Ismayil S.;Moon, Yong-Hwan;Lee, Choon-Hwan;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1479-1484
    • /
    • 2010
  • Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.

대장내 항염증 작용이 있는 천연 소재의 개발 (Studies on Protective Effect of Herbal medicines against Experimental Inflammtory Bowel Disease Model)

  • 조성완
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.318-321
    • /
    • 2009
  • The Efficacy of PSB-2061, was investigated in comparision with predinisolone in acetic acid and Picrylsulfonic acid solution (TNBS)-induced rat inflammatory bowel disease (IBD) for 5 days. 5 % TNBS solution were administered with polyethylene (P.E) tube inserted to rats intracolon, which causing colitis to the rats. The TNBS control group (the saline treated colitic rat) exhibited ulceration and inflammation of the distal colon with formation of granuloma and pathologic connections. We checked the inflammatory parameters like rat's weight, food intake quantity change during administration. After 5 days, we sacrificed the rats and checked the colon's length, ulcer and pathologic condition. Oral treatment with PSB-2061 resulted in significant recovery of macroscopic parameters like weight and diet intake change. Especially, PSB-2061 extract had a more potent effect than $mesalazine^{(R)}$ on macroscopic colonic damage score. We can suggest that PSB extract could be a promising drug in the treatment of IBD.

  • PDF

Effect of Co-inoculation of Two Bacteria on Phosphate Solubilization

  • Lee, Yu-Jin;Lee, Heon-Hwak;Lee, Chan-Jung;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.318-326
    • /
    • 2016
  • Two phosphate solubilizing bacteria, Pantoea rodasii PSB-11and Enterobacter aerogenes PSB-12, were isolated from button mushroom compost and employed to assess their synergistic effect in liquid medium and on growth of green gram plants by single and co-inoculation of the strains. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($521{\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of Pantoea strain ($485{\mu}g\;ml^{-1}$) and Enterobacter strain ($470{\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production and glucose consumption was observed in the E. aerogenes PSB-12 single inoculated culture medium rather than those of co-inoculation. According to the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 10.6% and 10.7% higher shoot and root growth respectively compared to the control. Therefore, in concluding, co-inoculation of the strains P. rodasii and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, being short assessment period of the present study, we recommend in engaging further works under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Synergistic effect of co-inoculation with phosphate-solubilizing bacteria

  • Park, Jin-Hee;Lee, Heon-Hak;Han, Chang-Hoon;Yoo, Jeoung-Ah;Yoon, Min-Ho
    • 농업과학연구
    • /
    • 제43권3호
    • /
    • pp.401-414
    • /
    • 2016
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia anthina PSB-15 and Enterobacter aerogenes PSB-16, was assessed in liquid medium and green gram plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($519{\mu}g\;mL^{-1}$) into the medium, followed by single inoculation of Burkholderia strain ($492{\mu}g\;mL^{-1}$) and Enterobacter strain ($483{\mu}g\;mL^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production, and glucose consumption were observed in the culture medium co-inoculated with PSB-15 and PSB-16 strains rather than that of single inoculation. Based on the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 9% and 8% higher shoot and root growth, respectively, compared to the control. Therefore, in conclusion, co-inoculation of the strains B. anthina and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, considering the short assessment period of the present study, we recommend engaging in further work under field conditions in order to test the suitability of these strains as bio-inoculants.

Current Understanding of the Mechanism of qE, a Major Component of Non-photochemical Quenching in Green Plants

  • Zulfugarov Ismayil S.;Mishra Sujata R.;Han, Ok-Kyung;Safarova Rena B.;Nath Krishna;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.175-183
    • /
    • 2005
  • Plants dissipate excess excitation energy from their photosynthetic apparatus by a process called non-photochemical quenching (NPQ). The major part of NPQ is energy dependent quenching (qE) which is dependent on the thylakoid pH and regulated by xanthophyll cycle carotenoids associated with photosystem (PS) II of higher plants. The acidification of the lumen leads to protonation and thus conformational change of light harvesting complex (LHC) proteins as well as PsbS protein of PSII, which results in the induction of qE. Although physiological importance of qE has been well established, the mechanistic understanding is rather insufficient. However, recent finding of crystal structure of LHCII trimer and identification of qE mutants in higher plants and algae enrich and sharpen our understanding of this process. This review summarizes our current knowledge on the qE mechanism. The nature of quenching sites and components involved in this process, and their contribution and interaction for the generation of qE appeared in the proposed models for the qE mechanism are discussed.

  • PDF

Glyphosate 독성: III. psb A와 lac Z 유전자의 Hybrid 단백질로부터 만들어진 항체를 이용한 토마토 정단분열조직의 Thylakoid막 내 QB 단백질의 검정 (Glyphosate Toxicity: III. Detection of QB Protein in Thylakoid Membrane of Tomato Apical Meristem Using an Antibody Raised from Hybrid Protein of psb A and lac Z Gene)

  • 김태완;니콜라스 암라인
    • 한국잡초학회지
    • /
    • 제15권3호
    • /
    • pp.206-213
    • /
    • 1995
  • Glyphosate를 토마토의 동화산물 공급부위에 처리하였을 때, 제초제결합 단백질인 QB 단백질을 Escherichia coli 내에서 ${\alpha}$-galactosidase가 발현되기 위해 lac Z 유전자의 3' 말단에 cloning된 시금치 psb A 유전자에 의해 발현되는 hybrid 단백질에 대한 항체를 형성시킨 후 이것을 이용하여 immunoblotting을 실시하였다. G1yphosate는 thylakoid 막의 Photosystem II내에 있는 D1 단백질의 붕괴에 영향을 주었다. LHC II 복합체내의 D1 단백질의 기능 이상은 glyphosate 의 다면발현적 효과였다.

  • PDF

Taxonomic status of three taxa of Elsholtzia (E. hallasanensis, E. springia, and E. splendens var. fasciflora) (Lamiaceae) based on molecular data

  • Lee, Chang Shook;Hwang, Kung Ae;Kim, Jin Ok;Suh, Hyoung Min;Lee, Nam Sook
    • 식물분류학회지
    • /
    • 제41권3호
    • /
    • pp.259-266
    • /
    • 2011
  • Elsholtzia hallasanensis, E. springia, and E. splendens var. fasciflora (Lamiaceae) were reported recently as new species or new varieties of E. splendens according to their morphological characteristics. To reappraise the taxonomic status of these additional taxa and to determine the relationships between all Korean Elsholtzia taxa except E. saxatilis, which is distributed in North Korea, molecular studies based on the nrDNA (ITS) and cpDNA (rpl16, and trnH-psbA) sequences of seven taxa of Elsholtzia and one outgroup were carried out. The molecular data support that E. angustifolia and E. minima are distinct species from E. splendens and E. ciliata, respectively, because they have several private marker genes and show monophyly. The molecular data also support that E. splendens has a very close taxonomic relationship with both E. hallasanensis and E. springia. We found that E. splendens var. fasciflora, with multiple inflorescence, was based on several private marker genes and on the monophyly of its trees, suggesting that it can be considered as a variety. Elsholtzia springia, with the same sequences and the same morphological characteristics with E. hallasanensis after transplanting, should be treated as a synonym of E. hallasanensis. Moreover, we consider the taxonomic status of E. hallasanensis as E. splendens var. hallasanensis (Y. Lee) N.S. Lee & C.S. Lee, stat. nov.

인산염 가용화균 Enterobacter agglomerans에 의한 Hydroxyapatite 가동화와 유기산 생성 (Hydroxyapatite Solubilization and Organic Acid Production by Enterobacter agglomerans)

  • 김길용
    • 한국토양비료학회지
    • /
    • 제30권2호
    • /
    • pp.189-195
    • /
    • 1997
  • 본 실험은 인산염 분해균을 밀의 근권토양으로부터 분리 동정하고 인산염 분해균의 유기산 생성과 pH와의 관계를 조사하기 위해 실시하였다. 인산염 분해균은 36시간 배양후 선명한 투명대(clear zone)를 형성하였다. API 20E System과 BIOLOG$^{TM}$ analysis를 사용하여 동정한 결과 이 균주는 Entrobacter agglomerans로 동정되었다. Similarity와 distance는 각자 0.656과 4.790로 나타났다. Hydroxyapatite를 함유한 배지에서 E. agglomerans를 배양하는 동안 인산의 농도가 현저히 증가하였으며, pH와 인산의 농도와는 고도의 역상관($r^2=0.933$)을 보였다. HPLC로 분석한 결과 이 균주는 여러 가지 유기산을 생성하였으며 그 중 oxalic acid가 가장 많이 생성되었다. Acid phosphatase는 alkaline phosphatase에 비해서 10-15배의 활성을 보였으며, alkaline phosphatase는 배양 동안 거의 0에 가까운 활성을 보였다. E. agglomerans의 population은 배양 하루 동안 현저히 증가하였으나 그 후 급격히 감소하였다.

  • PDF

인산용해미생물에 의한 불용성 인의 용해와 식물생장에 미치는 영향 (Phosphate Solubilization and Plant Growth Promotion by Crop Associated Bacteria)

  • 나정행;최진호;김영덕;고현선;박노동;김길용
    • 한국토양비료학회지
    • /
    • 제42권1호
    • /
    • pp.29-36
    • /
    • 2009
  • 14종의 인산용해미생물을 근권으로부터 분하였고, 16S rRNA gene 염기서열에 의하여 동정하였다 그 중 hydroxyapatite를 첨가한 배지에서 인산용해능력이 가장 뛰어난 Acinetobacter sp., Pseudomonas orientalis, Enterobacter asburiae 3종을 선택하였다. 선택된 3종의 미생물에 의해 용해된 인산의 농도는 $200\;mg\;L^{-1}$에서부터 $2300\;mg\;L^{-1}$까지 이르렀으며, 증가된 인산 농도는 배양액의 pH와 역으로 비례하였다. HPLC를 사용하여 유기산을 측정한 결과 Acinetobacter sp.는 gluconic acid를, P. orientalis는 gluconic acid와 2-ketogluconic acid를 그리고 E. asburiae는 acetic acid와 succinic acid를 분비하였다. 한편 P. orientalis와 E. asburiae는 각각 $372\;mg\;L^{-1}$$191\;mg\;L^{-1}$의 IAA 분비하였고, Acinetobacter sp.는 IAA를 생성하지 못했다. 인산용해미생물이 오이의 생장에 미치는 효과를 조사한 결과, P. orientalis를 처리한 시험구가 가장 높았고, E. asburiae, Acinetobacter sp., control 순으로 나타났다. 이러한 식물생장 효과는 인산용해미생물에 의한 불용성 인산용해와 IAA 생산과 관련이 있다고 생각된다.