• Title/Summary/Keyword: pruning techniques

Search Result 37, Processing Time 0.021 seconds

Rejuvenation of woody plants (목본식물(木本植物)의 재유령화(再幼齡化))

  • Yi, Jae-Seon;Moon, Heung-Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.7 no.1
    • /
    • pp.7-21
    • /
    • 1990
  • Without scientific understanding of the phase change and the rejuvenation in woody perennials, many tree breeders have successfully rejuvenated and multiplied mature trees of some tree species, i.e., Eucalyptus, Pseudotsuga menziesii Sequoia sempervirens, Pinus radiata, Pinus pinaster, Quercus virginiana, Hedera helix, Juglans, apples, grapes, and so on. Practical techniques discussed to rejuvenate the old trees include grafting to younger stock, growth regulator treatment, pruning, repeated cutting, and in vitro culture. However, a combination of skills mentioned is recommended for rejuvenation of the mature propagation material. It is strongly required to develop a morphological and/or biochemical indicator system to judge the juvenility.

  • PDF

Polynomial modeling of confined compressive strength and strain of circular concrete columns

  • Tsai, Hsing-Chih
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.603-620
    • /
    • 2013
  • This paper improves genetic programming (GP) and weight genetic programming (WGP) and proposes soft-computing polynomials (SCP) for accurate prediction and visible polynomials. The proposed genetic programming system (GPS) comprises GP, WGP and SCP. To represent confined compressive strength and strain of circular concrete columns in meaningful representations, this paper conducts sensitivity analysis and applies pruning techniques. Analytical results demonstrate that all proposed models perform well in achieving good accuracy and visible formulas; notably, SCP can model problems in polynomial forms. Finally, concrete compressive strength and lateral steel ratio are identified as important to both confined compressive strength and strain of circular concrete columns. By using the suggested formulas, calculations are more accurate than those of analytical models. Moreover, a formula is applied for confined compressive strength based on current data and achieves accuracy comparable to that of neural networks.

Zero forcing based sphere decoder for generalized spatial modulation systems

  • Jafarpoor, Sara;Fouladian, Majid;Neinavaie, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.145-159
    • /
    • 2019
  • To reduce the number of radio frequency (RF) chains in multiple input multiple output (MIMO) systems, generalized spatial modulation (GSM) techniques have been proposed in the literature. In this paper, we propose a zero-forcing (ZF)-based detector, which performs an initial pruning of the search tree that will be considered as the initial condition in a sphere decoding (SD) algorithm. The proposed method significantly reduces the computational complexity of GSM systems while achieving a near maximum likelihood (ML) performance. We analyze the performance of the proposed method and provide an analytic performance difference between the proposed method and the ML detector. Simulation results show that the performance of the proposed method is very close to that of the ML detector, while achieving a significant computational complexity reduction in comparison with the conventional SD method, in terms of the number of visited nodes. We also present some simulations to assess the accuracy of our theoretical results.

A study on data mining techniques for soil classification methods using cone penetration test results

  • Junghee Park;So-Hyun Cho;Jong-Sub Lee;Hyun-Ki Kim
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.

Complete and Incomplete Observability Analysis by Optimal PMU Placement Techniques of a Network

  • Krishna, K. Bala;Rosalina, K. Mercy;Ramaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1814-1820
    • /
    • 2018
  • State estimation of power systems has become vital in recent days of power operation and control. SCADA and EMS are intended for the state estimation and to communicate and monitor the systems which are operated at specified time. Although various methods are used we can achieve the better results by using PMU technique. On placing the PMU, operating time is reduced and making the performance reliable. In this paper, PMU placement is done in two ways. Those are 'optimal technique with pruning operation' and 'depth of unobservability' considering incomplete and complete observability of a network. By Depth of Unobservability Number of PMUs are reduced to attain Observability of the network. Proposed methods are tested on IEEE 14, 30, 57, SR-system and Sub systems (1, 2) with bus size of 270 and 444 buses. Along with achieving complete observability analysis, single PMU loss condition is also achieved.

A Hierarchical Sequential Index Scheme for Range Queries in Wireless Location-based Services (무선 위치기반서비스에서 영역질의처리를 위한 계층적 인덱스기법)

  • Park, Kwang-Jin
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • In this paper, we propose a novel approach to reduce spatial query access latency and energy consumption by leveraging results from nearby peers in wireless broadcast environments. We propose a three-tier Hierarchical Location-Based Sequential access index, called HLBS, which provides selective tuning (pruning and searching entries) without pointers using a linear accessing structure based on the location of each data object. The HLBS saves search cost and index overhead, since the small index size with a sequential index structure results in low access latency overhead and facilitates efficient searches for sequential-access media (wireless channels with data broadcast). Comprehensive experiments illustrate that the proposed scheme is more efficient than the previous techniques in terms of energy consumption.

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.

Fully parallel low-density parity-check code-based polar decoder architecture for 5G wireless communications

  • Dinesh Kumar Devadoss;Shantha Selvakumari Ramapackiam
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.485-500
    • /
    • 2024
  • A hardware architecture is presented to decode (N, K) polar codes based on a low-density parity-check code-like decoding method. By applying suitable pruning techniques to the dense graph of the polar code, the decoder architectures are optimized using fewer check nodes (CN) and variable nodes (VN). Pipelining is introduced in the CN and VN architectures, reducing the critical path delay. Latency is reduced further by a fully parallelized, single-stage architecture compared with the log N stages in the conventional belief propagation (BP) decoder. The designed decoder for short-to-intermediate code lengths was implemented using the Virtex-7 field-programmable gate array (FPGA). It achieved a throughput of 2.44 Gbps, which is four times and 1.4 times higher than those of the fast-simplified successive cancellation and combinational decoders, respectively. The proposed decoder for the (1024, 512) polar code yielded a negligible bit error rate of 10-4 at 2.7 Eb/No (dB). It converged faster than the BP decoding scheme on a dense parity-check matrix. Moreover, the proposed decoder is also implemented using the Xilinx ultra-scale FPGA and verified with the fifth generation new radio physical downlink control channel specification. The superior error-correcting performance and better hardware efficiency makes our decoder a suitable alternative to the successive cancellation list decoders used in 5G wireless communication.

Parameter-Efficient Neural Networks Using Template Reuse (템플릿 재사용을 통한 패러미터 효율적 신경망 네트워크)

  • Kim, Daeyeon;Kang, Woochul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.169-176
    • /
    • 2020
  • Recently, deep neural networks (DNNs) have brought revolutions to many mobile and embedded devices by providing human-level machine intelligence for various applications. However, high inference accuracy of such DNNs comes at high computational costs, and, hence, there have been significant efforts to reduce computational overheads of DNNs either by compressing off-the-shelf models or by designing a new small footprint DNN architecture tailored to resource constrained devices. One notable recent paradigm in designing small footprint DNN models is sharing parameters in several layers. However, in previous approaches, the parameter-sharing techniques have been applied to large deep networks, such as ResNet, that are known to have high redundancy. In this paper, we propose a parameter-sharing method for already parameter-efficient small networks such as ShuffleNetV2. In our approach, small templates are combined with small layer-specific parameters to generate weights. Our experiment results on ImageNet and CIFAR100 datasets show that our approach can reduce the size of parameters by 15%-35% of ShuffleNetV2 while achieving smaller drops in accuracies compared to previous parameter-sharing and pruning approaches. We further show that the proposed approach is efficient in terms of latency and energy consumption on modern embedded devices.

Studies on the productivity of mulberry field in Korea. (우리나라 상전의 생산성에 관한 조사연구)

  • 김문협;임수호
    • Journal of Sericultural and Entomological Science
    • /
    • no.11
    • /
    • pp.1-14
    • /
    • 1970
  • The following results were obtained by surveying the productivity of mulberry fields in Korea. 1. The productivity of mulberry field per 10a in which cocoon can be yield belongs to the range of 9.8∼105kg, and among them the productivity of 20 to 60kg was chiefly distributed. And their average was 50.2kg. 2. In general, the larger the mulberry field in scale per a person is, the lower the productivity of it is, but about 6.6 ares per a person was estimated to be economic scale for high productivity. 3. As far as the texture of soil is concerned, sandy-loam and loam contained a capacity of higher productivity while others like clay and sand that of lower productivity, And the depth of surface soil must be at least 50cm, although 70cm's depth of surface sail could bring about high productivity. 4. Fertilization of 900kg's compost on planting and 1,200kg's that after planting could enhance the productivity, because the use of compost have a positive relation to the productivity. 5. The greater the number of farmer's domestic animals is as a source of organic matter the higher the productivity is. 6. In the case of fertilization of 1,200kg compost, the amount of 20kg's nitrogen per 10 ares as chemical manure was best for high productivity. However, fertilization of 14.7kg's nitrogen as average amount of that, which is far below the standard amount, had been a factor to reduce the productivity of mulberry field. 7. In pruning the low-cut form resulted in high productivity, but as their shape become taller due to the lack of techniques, they were turned out to be non head pruning, thus to produce poor harvest of leaves. 8. The pure mulberry fields showed better productivity than others such as wide and narrow ridge planting and inter-crop planting. 9. As for the degree of planting density, at least 800 trees per 10 ares should be planted to increase the productivity, although the planting of 713 trees per 10 ares could be possible in case of the low stemmed pruning. 10. The hole and tranch in planting must be digged as wider and dipper as possible far the better growth of mulberry tree. 11. On the whole, varieties like NOsang and Y oung-cheun choowoo had a tendency of lower productivity.

  • PDF