• 제목/요약/키워드: proximity point

검색결과 113건 처리시간 0.021초

SOME RESULTS ON COMMON BEST PROXIMITY POINT AND COMMON FIXED POINT THEOREM IN PROBABILISTIC MENGER SPACE

  • Shayanpour, Hamid
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1037-1056
    • /
    • 2016
  • In this paper, we define the concepts of commute proximally, dominate proximally, weakly dominate proximally, proximal generalized ${\varphi}$-contraction and common best proximity point in probabilistic Menger space. We prove some common best proximity point and common fixed point theorems for dominate proximally and weakly dominate proximally mappings in probabilistic Menger space under certain conditions. Finally we show that proximal generalized ${\varphi}$-contractions have best proximity point in probabilistic Menger space. Our results generalize many known results in metric space.

SOME RESULTS ON BEST PROXIMITY POINT FOR CYCLIC B-CONTRACTION AND S-WEAKLY CYCLIC B-CONTRACTION MAPPINGS

  • V. Anbukkarasi ;R. Theivaraman;M. Marudai ;P. S. Srinivasan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권4호
    • /
    • pp.417-427
    • /
    • 2023
  • The purpose of this paper is establish the existence of proximity point for the cyclic B-contraction mapping on metric spaces and uniformly convex Banach spaces. Also, we prove the common proximity point for the S-weakly cyclic B-contraction mapping. In addition, a few examples are provided to demonstrate our findings.

GENERALIZED KKM-TYPE THEOREMS FOR BEST PROXIMITY POINTS

  • Kim, Hoonjoo
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1363-1371
    • /
    • 2016
  • This paper is concerned with best proximity points for multimaps in normed spaces and in hyperconvex metric spaces. Using the generalized KKM theorem, we deduce new best proximity pair theorems for a family of multimaps with unionly open fibers in normed spaces. And we prove a new best proximity point theorem for quasi-lower semicontinuous multimaps in hyperconvex metric spaces.

BEST PROXIMITY POINT THEOREMS FOR 𝜓-𝜙-CONTRACTIONS IN METRIC SPACES

  • Shilpa Rahurikar;Varsha Pathak;Satish Shukla
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제31권3호
    • /
    • pp.337-354
    • /
    • 2024
  • In this paper, some best proximity points results for 𝜓-𝜙-contractions on complete metric spaces are proved. These results extend and generalize some best proximity and fixed point results on complete metric spaces. An example and some corollaries are provided that demonstrate the results proved herein.

A FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING BASED ON A SELF-REGULAR PROXIMITY

  • Liu, Zhongyi;Chen, Yue
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.119-133
    • /
    • 2011
  • This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming. We introduce a special self-regular proximity to induce the feasibility step and also to measure proximity to the central path. The result of polynomial complexity coincides with the best-known iteration bound for infeasible interior-point methods, namely, O(n log n/${\varepsilon}$).

BEST PROXIMITY POINT THEOREMS FOR CYCLIC 𝜃-𝜙-CONTRACTION ON METRIC SPACES

  • Rossafi, Mohamed;Kari, Abdelkarim;Lee, Jung Rye
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권4호
    • /
    • pp.335-352
    • /
    • 2022
  • In this paper, we give an extended version of fixed point results for 𝜃-contraction and 𝜃-𝜙-contraction and define a new type of contraction, namely, cyclic 𝜃-contraction and cyclic 𝜃-𝜙-contraction in a complete metric space. Moreover, we prove the existence of best proximity point for cyclic 𝜃-contraction and cyclic 𝜃-𝜙-contraction. Also, we establish best proximity result in the setting of uniformly convex Banach space.

COMPLETION OF A UNIFORM SPACE IN K0-PROXIMITY SPACE

  • Han, Song Ho
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.41-47
    • /
    • 2004
  • We introduce the $K_0$-proximity space as a generalization of the Efremovi$\check{c}$-proximity space. We try to show every ultrafilter in $K_0$-proximity space generates a cluster and every Cauchy cluster is a point cluster.

  • PDF

단백질 분자에 대한 proximity 연산을 위한 복셀 맵과 스피어 트리 구조 비교 (Comparison of Voxel Map and Sphere Tree Structures for Proximity Computation of Protein Molecules)

  • 김병주;이정은;김영준;김구진
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.794-804
    • /
    • 2012
  • 단백질 분자에 대해 공간 상의 한 점으로부터의 최소 거리를 계산하거나, 임의의 점에 대한 충돌을 감지하는 등의 proximity query는 분자에 대한 기하학적 연산을 수행하기 위해 매우 중요한 기본 연산이다. Proximity query의 계산 시간 효율성은 분자가 어떤 자료구조로 표현되는가에 따라 크게 달라질 수 있다. 본 논문에서는 GPU 가속을 이용하여 효율적으로 proximity 연산을 수행하기 위한 기법을 제안하고자 한다. 분자에 대응하는 구의 집합에 대해 복셀 맵 (voxel map)과 스피어 트리 (sphere tree) 를 사용한 자료구조를 제안하며 각 자료구조에 대응되는 알고리즘을 제시한다. 또한, 1,000개~15,000개의 원자를 포함하는 분자에 대한 실험을 통해 두 자료구조의 성능이 기존 자료구조에 비해 최소 3배에서 최대 633배 향상되었음을 보인다.