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BEST PROXIMITY POINT THEOREMS FOR CYCLIC
θ-φ-CONTRACTION ON METRIC SPACES

Mohamed Rossafi a, Abdelkarim Kari b and Jung Rye Lee c, ∗

Abstract. In this paper, we give an extended version of fixed point results for θ-
contraction and θ-φ-contraction and define a new type of contraction, namely, cyclic
θ-contraction and cyclic θ-φ-contraction in a complete metric space. Moreover, we
prove the existence of best proximity point for cyclic θ-contraction and cyclic θ-
φ-contraction. Also, we establish best proximity result in the setting of uniformly
convex Banach space.

1. Introduction

In 1922, Polish mathematician Banach [1] proved a very important result re-
garding a contraction mapping, known as the Banach contraction principle. It is
one of the fundamental results in fixed point theory. Due to its importance, many
mathematicians have studied many interesting extensions and generalizations in
[2, 7, 8, 9, 10].

Best proximity point theorems are those results that present sufficient conditions
for the existence of a best proximity point and algorithms for finding best proximity
points. It is interesting to see that best proximity point theorems generalize fixed
point theorems in a natural way. Some interesting best proximity point theorems
in the setting of metric spaces or uniformly convex Banach space can be found in
[3, 4, 5].

Our main aim is to resolve a more general problem on the existence of fixed point
for θ-contraction and θ-φ-contraction. Also, we establish best proximity point in a
complete metric space and in a uniformly convex Banach space using this new type
mapping.
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2. Preliminaries

In this section, we give basic definitions and notations which will be essential
throughout the paper.

The following definition was given by Jleli et al. in [6].

Definition 2.1 ([6]). Let Θ be the family of all functions θ : ]0,+∞[ → ]1, +∞[
such that

(θ1) θ is increasing;
(θ2) for each sequence (xn) ⊂ ]0, +∞[,

lim
n→0

xn = 0 if and only if lim
n→∞ θ (xn) = 1;

(θ3) θ is continuous.

A mapping T : X → X is said to be θ-contraction if there exists k ∈ such that
for all x, y ∈ X d(Tx, Ty) > 0,

(2.1) θ(d(Tx, Ty)) ≤ θ(d(x, y)).

Remark 2.2 ([7]). From (θ1) and (2.1), it is clear that every θ-contraction T is a
contractive mapping, i.e.,

d(Tx, Ty) < d(x, y), ∀x, y ∈ X,Tx 6= Ty.

Thus every θ-contraction is a continuous mapping.

In [11], Zheng et al. presented the concept of θ-φ-contraction in metric spaces.

Definition 2.3 ([11]). Let Φ be the family of all functions φ: [1, +∞[ → [1, +∞[
such that

(φ1) φ is nondecreasing;
(φ2) for each t ∈ ]1, +∞[, limn→∞φn(t) = 1;
(φ3) φ is continuous.

Lemma 2.4 ([11]). If φ ∈ Φ, then φ(1) = 1 and φ(t) < t for all t ∈ ]1,∞[ .

Definition 2.5 ([11]). Let (X, d) be a metric space and T : X → X be a mapping.
Then T is said to be a θ-φ-contraction if there exist θ ∈ Θ and φ ∈ Φ such that for
all x, y ∈ X with d (Tx, Ty) > 0,

(2.2) θ [d (Tx, Ty)] ≤ φ [θ (d (x, y))] .
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Remark 2.6. From (θ1), Lemma 2.4 and (2.2), it is clear that every θ-φ-contraction
T is a contractive mapping, i.e.,

d(Tx, Ty) < d(x, y), ∀x, y ∈ X,Tx 6= Ty.

Thus every θ-φ-contraction is a continuous mapping.

Theorem 2.7 ([11]). Let (X, d) be a complete metric space and T : X → X be a
θ-φ-contraction. Then T has a unique fixed point.

Definition 2.8 ([5]). Let A and B be two nonempty closed subsets of a complete
metric space (X, d) and T : A ∪B → A ∪B be a mapping such that T (A) ⊂ B and
T (B) ⊂ A. We say that T is a cyclic contraction if

d(Tx, Ty) ≤ αd(x, y) + (1− α)d(A,B)

for some α ∈ ]0, 1[ and all x ∈ A and y ∈ B, where d(A,B) = inf{d(x, y) : x ∈
A, y ∈ B}.
A point x ∈ A is said to be a best proximity point for T if d(x, Tx) = d(A,B).

Definition 2.9 ([5]). A Banach space X is uniformly convex if there exists a strictly
increasing function δ : ]0, 2] → [0, 1] such that the following condition holds for all
x, y, z ∈ X, R > 0 and r ∈ [0, 2R] with ‖x− z‖ ≤ R, ‖y − z‖ ≤ R and ‖x− y‖ ≥ r,

‖x + y

2
− z‖ ≤ 1− δ

( r

R

)
R.

Definition 2.10 ([5]). A subset K of a metric space X is boundedly compact if
every bounded sequence in K has a subsequence converging to a point in K.

3. Main Results

In the following, using the idea introduced by Kanta and Mondal in [5], we obtain
fixed point results for cyclic type θ-contraction and θ-φ-contraction.

Theorem 3.1. Suppose that there exist two nonempty closed subsets A and B of a
complete metric space (X, d) and that a mapping T : A ∪B → A ∪B satisfies

(1) T (A) ⊂ B and T (B) ⊂ A,
(2) for all x ∈ A and y ∈ B, there exists k ∈ ]0, 1[ such that

d(T (x), T (y)) > 0 ⇒ θ(d(T (x), T (y))) ≤ [θ(d(x, y))]k .

Then T has a unique fixed point in A ∩B.
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Proof. First, note that if x and y are two different fixed points of T , then d(x, y) > 0.
Now by the definition of θ-contraction we have

θ(d(x, y)) = θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k < θ(d(x, y)).

Since k ∈ ]0, 1[, we have

θ(d(x, y)) < θ(d(x, y)).

So x = y. Thus the uniqueness part of the theorem is done.
For the existence part, suppose x0 ∈ A ∩ B. Define a sequence {xn} such that

xn+1 = Txn for all n ∈ N. Set λn = d(xn, xn+1) for all n ∈ N. Note that if λn = 0
for some n ≥ 0, then xn = xn+1 = Txn. Therefore, xn ∈ A∩B is a fixed point of T

and the proof follows.
We now assume that λn 6= 0 for all n ≥ 0.

Since T is θ-contraction, from (2.1),

θ(λn) ≤ [θ(λn−1)]
k ≤ [θ(λn−2)]

k2 ≤ · · · ≤ [θ(λ0)]
kn

.

Using (θ1), we get

λn < λn−1.

Therefore, {λn}n∈N is a monotone strictly decreasing sequence of nonnegative real
numbers. Consequently, there exists α ≥ 0 such that

lim
n→∞λn = α.

Now, we claim that α = 0. Arguing by contraction, we assume that α > 0. Since
{λn}n∈N is a nonnegative decreasing sequence, we have

λn ≥ α ∀n ∈ N.

By the property of θ, we get

(3.1) 1 < θ (α) ≤ θ (λn)kn

.

Letting n →∞ in (3.1) , we obtain

1 < θ (α) ≤ 1,

which is a contradiction. Therefore,

lim
n→∞λn = 0.

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn,m→∞ d (xn,xm)
= 0. Suppose to the contrary. Then there is an ε > 0 such that for an integer k
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there exists two sequences
{
n(k)

}
and

{
m(k)

}
such that d

(
xm(k)

, xn(k)+1

)
≥ ε and

d
(
xm(k)

, xn(k)−1

)
< ε. Using the triangular inequality, we have

ε ≤ d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xn(k)−1

)
+ d

(
xn(k)−1

, xn(k)

)
< ε + d

(
xn(k)−1

, xn(k)

)
.

(3.2)

Taking the limit as k →∞ in (3.2), we have

lim
k→∞

d
(
xm(k)

, xn(k)

)
= ε.

On the other hand,

d
(
xm(k)+1

, xn(k)+1

)
≤ d

(
xm(k)+1

, xn(k)

)
+ d

(
xn(k)

, xn(k)

)
,(3.3)

d
(
xm(k)

, xn(k)

)
≤ d

(
xm(k)

, xm(k)+1

)
+ d

(
xm(k)+1

, xn(k)+1

)
+ d

(
xn(k)+1

, xn(k)

)
.

(3.4)

Taking the limit as k →∞ in (3.3) and (3.4), we have

lim
k→∞

d
(
xm(k)+1

, xn(k)+1

)
= ε.

Now, letting x = xm(k)
and y = xn(k)

in (2.1), we obtain

θ
[
d

(
xm(k)+1

, xn(k)+1

)]
≤

[
θ
(
d

(
xm(k)

, xn(k)

))]k
.

Letting k →∞ the above inequality and applying the continuity of θ, we obtain

θ

(
lim

k→∞
d

(
xm(k)+1

, xn(k)+1

))
≤

[
θ

(
lim

k→∞
d

(
xm(k)

, xn(k)

))]k

.

Therefore,
θ(ε) ≤ [θ(ε)]k < θ(ε).

Since θ is increasing, we get
ε < ε,

which is a contradiction. Thus

lim
n,m→∞ d (xm, xn) = 0.

Hence {xn} is a Cauchy sequence in A. Let limn→∞ xn = z. Then there are
infinitely many number of terms of xn in A as well as in B. Therefore z ∈ A ∩ B

and so ∈ A ∩B 6= φ.
Now (1) implies T : A∩B → A∩B while (2) implies that T restricted to A∩B

is a θ-contraction. By Theorem 3.1, applied to T on A ∩B, we have a unique fixed
point in A ∩B. ¤
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Theorem 3.2. Suppose that there exist two nonempty closed subsets A and B of a
complete metric space (X, d) and that a mapping T : A ∪B → A ∪B satisfies

(1) T (A) ⊂ B and T (B) ⊂ A;
(2) for all x ∈ A and ly ∈ B, there exist θ ∈ Θ and φ ∈ Φ such that

d(T (x), T (y)) > 0 ⇒ θ(d(T (x), T (y))) ≤ φ [θ(d(x, y))] .

Then T has a unique fixed point in A ∩B.

Proof. First, note that if x and y are two different fixed points of T , then d(x, y) > 0.
Now by the definition of θ-φ-contraction, we have

θ(d(x, y)) = θ(d(Tx, Ty)) ≤ φ [θ(d(x, y))] < θ(d(x, y)).

By Lemma 2.4, we have
θ(d(x, y)) < θ(d(x, y)).

So x = y. Thus the uniqueness part of the theorem is done.
For the existence part, suppose x0 ∈ A ∩ B. Define a sequence {xn} such that

xn+1 = Txn for all n ∈ N. Set λn = d(xn, xn+1) for all n ∈ N. Note that if λn = 0
for some n ≥ 0, then xn = xn+1 = Txn. Therefore, xn ∈ A∩B is a fixed point of T

and the proof follows.
We now assume that λn 6= 0 for all n ≥ 0. Since T is θ-φ-contraction, from (2.2),

θ(βn) ≤ φ [θ(βn−1)] ≤ φ2 [θ(βn−2)] ≤ · · · ≤ φn [θ(β0)] .

Using (θ1) and Lemma 2.4, we get

βn < βn−1.

Therefore, {βn}n∈N is a monotone strictly decreasing sequence of nonnegative real
numbers. Consequently, there exists µ ≥ 0 such that

lim
n→∞βn = µ.

Now, we claim that µ = 0. Arguing by contraction, we assume that µ > 0. Since
{βn}n∈N is a nonnegative decreasing sequence, we have

βn ≥ µ ∀n ∈ N.

By the properties of θ and φ, we get

(3.5) 1 < θ (µ) ≤ φn [θ (β0)] .

Letting n →∞ in (3.5) , we obtain

1 < θ (µ) ≤ 1
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which is a contradiction. Therefore,

lim
n→∞µn = 0.

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn,m→∞ d (xn,xm) =
0. Suppose to the contrary. Then there is an ε > 0 such that for any integer k

there exist two sequences
{
n(k)

}
and

{
m(k)

}
such that d

(
xm(k)

, xn(k)+1

)
≥ ε and

d
(
xm(k)

, xn(k)−1

)
< ε.

As in the proof of Theorem 3.1, we have

lim
k→∞

d
(
xm(k)

, xn(k)

)
= ε

and

lim
k→∞

d
(
xm(k)+1

, xn(k)+1

)
= ε.

Now, letting x = xm(k)
and y = xn(k)

in (2.2), we obtain

θ
[
d

(
xm(k)+1

, xn(k)+1

)]
≤ φ

[
θ
(
d

(
xm(k)

, xn(k)

))]
.

Letting k → ∞ the above inequality and applying the continuity of θ and φ and
using Lemma 2.4, we obtain

θ

(
lim

k→∞
d

(
xm(k)+1

, xn(k)+1

))
≤ φ

[
θ

(
lim

k→∞
d

(
xm(k)

, xn(k)

))]
.

Therefore,

θ(ε) ≤ φ [θ(ε)] < θ(ε).

Since θ is increasing, we get

ε < ε,

which is a contradiction. Thus

lim
n,m→∞ d (xm, xn) = 0.

Hence {xn} is a Cauchy sequence in A. Let limn→∞ xn = z. Then there are
infinitely many number of terms of xn in A as well as in B. Therefore z ∈ A ∩ B

and so ∈ A ∩B 6= φ.
Now (1) implies T : A∩B → A∩B while (2) implies that T , restricted to A∩B,

is a θ-contraction. By Theorem 3.1, applied to T on A ∩B, we have a unique fixed
point in A ∩B. ¤

To study the convergence and existence results for best proximity points, we
first introduce new concepts of cyclic θ-contraction and θ-φ-contraction. We also
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prove the existence results for best proximity points of cyclic θ-contraction and θ-
φ-contraction in the setting of uniformly convex Banach space.

Definition 3.3. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) and T : A∪B → A∪B be a mapping. Then we say that T is a θ-cyclic
contraction if the following conditions hold:

(i) T (A) ⊂ B and T (B) ⊂ A;
(ii) for all x ∈ A and y ∈ B, there exist k ∈ ]0, 1[ and θ ∈ Θ such that

d(Tx, Ty) > 0 ⇒ θ (d(Tx, Ty)) ≤ α [θ (d(x, y))]k + (1− α)θ (d(A,B))

for some α ∈ ]0, 1[ provided d(A,B) > 0.

Note that (ii) implies that T satisfies θ (d(Tx, Ty)) ≤ α [θ (d(x, y))]k for all x ∈ A

and y ∈ B. On the other hand, (ii) can be written as:

θ (d(Tx, Ty))− θ (d(A,B)) ≤ α
[
(θ (d(x, y)))k − θ (d(A,B))

]

≤ (θ (d(x, y)))k − θ (d(A,B)) .

Example 3.4. Consider the complete metric space X = R with the usual metric
d. If we consider θ(t) = e

√
t, t > 0, then clearly θ satisfies all the conditions from

(θ1) − (θ3). In this case, a mapping T : A ∪ B → A ∪ B such that T (A) ⊆ B and
T (B) ⊆ A satisfying the condition

d(Tx, Ty) ≤
[
α + (1− α)

√
d(A,B)

(√
d(x, y)

)−k
](√

d(x, y)
)k

for all x ∈ A and y ∈ B with d(Tx, Ty) > 0, α ∈ ]0, 1[ and k ∈ ]0, 1[, provided
d(A,B) > 0, is a cyclic θ-contraction.

Definition 3.5. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) and T : A ∪B → A ∪B be a mapping. Then we say that T is a cyclic
θ-φ-contraction if the following conditions hold:

(i) T (A) ⊂ B and T (B) ⊂ A;
(ii) for all x ∈ A and y ∈ B, there exist θ ∈ Θ and φ ∈ Φ such that

d(Tx, Ty) > 0 ⇒ θ (d(Tx, Ty)) ≤ αφ [θ (d(x, y))] + (1− α)θ (d(A,B))

for some α ∈ ]0, 1[ provided d(A,B) > 0.
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Note that (ii) implies that T satisfies θ (d(Tx, Ty)) ≤ αφ [θ (d(x, y))] for all x ∈ A

and y ∈ B. On the other hand, (ii) can be written as

θ (d(Tx, Ty))− θ (d(A,B)) ≤ α [φ (θ (d(x, y)))− θ (d(A,B))]

≤ φ (θ (d(x, y)))− θ (d(A,B)) .

Example 3.6. Consider the complete metric space X = R with the usual metric
d. If we consider θ(t) =

√
t + 1, t > 0 and φ(t) = t+1

2 , then clearly θ satisfies all
the conditions from (θ1) − (θ3) and φ satisfies all the conditions from (φ1) − (φ3).
In this case, a mapping T : A ∪ B → A ∪ B such that T (A) ⊆ B and T (B) ⊆ A

satisfying the condition

√
d(Tx, Ty)+1 ≤

[
α + (1− α)

((√
d(A,B) + 1

)( 2√
d(x, y) + 2

))](√
d(x, y) + 2

2

)

for all x ∈ A and y ∈ B with d(Tx, Ty) > 0, α ∈ ]0, 1[, provided d(A,B) > 0, is a
cyclic θ-φ-contraction.

Now we present our main results regarding the convergence and existence of best
proximity point as below.

Proposition 3.7. Let A and B be nonempty closed subsets of a complete metric
space (X, d). Suppose that a mapping T : A ∪B → A ∪B is a cyclic θ-contraction.
Let x0 ∈ A ∪ B and xn+1 = Tn for all n ∈ N. Suppose that {x2n} has a convergent
subsequence in A. Then we have

lim
n→+∞ d(xn, Txn) = d(A,B).

Proof. Suppose that x0 ∈ A ∪ B. Define a sequence {xn} such that xn+1 = Tn for
all n ∈ N. Now,

θ(d(x1, x2)) = θ(d(Tx0, Tx1))

≤ α [θ (d(x0, x1))]
k + (1− α)θ (d(A,B))

< [θ (d(x0, x1))]
k + (1− α)θ (d(A,B)) ,

which implies that

θ(d(x1, x2)− θ (d(A,B)) ≤ α
[
[θ (d(x0, x1))]

k + d(A, B)
]
.
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Again

θ(d(x2, x3)) = θ(d(Tx1, Tx2))

≤ α [θ (d(x1, x2))]
k + (1− α)θ (d(A,B))

< αθ (d(x1, x2)) + (1− α)θ (d(A,B)) ,

which implies that

θ(d(x2, x3))− d(A,B) < α [θ (d(x1, x2))− θ (d(A,B))]

≤ α2 [θ (d(x0, x1))− θ (d(A,B))] .

Recursively we obtain that for α ∈ ]0, 1[,

θ(d(xn, xn+1))− d(A,B) < αn [θ (d(x0, x1))− θ (d(A,B))] .

This implies that

lim
n→∞ θ(d(xn, xn+1)) = θ(d(A,B)).

Since θ is increasing,

lim
n→+∞(d(xn, xn+1)) = d(A, B).

That is,

lim
n→+∞(d(xn, Txn)) = d(A,B).

This completes the proof. ¤

Proposition 3.8. Let A and B be nonempty closed subsets of a complete metric
space (X, d). Suppose that a mapping T : A∪B → A∪B is a cyclic θ-φ-contraction.
Let x0 ∈ A ∪ B and xn+1 = Tn for all n ∈ N. Suppose that {x2n} has a convergent
subsequence in A. Then we have

lim
n→+∞ d(xn, Txn) = d(A,B).

Proof. Suppose that x0 ∈ A ∪ B. Define a sequence {xn} such that xn+1 = Tn for
all n ∈ N. Now,

θ(d(x1, x2)) = θ(d(Tx0, Tx1))

≤ αφ [θ (d(x0, x1))] + (1− α)θ (d(A,B))

< α [θ (d(x0, x1))] + (1− α)θ (d(A,B)) ,

which implies that

θ(d(x1, x2)− θ (d(A,B)) ≤ α [φ [θ (d(x0, x1))] + d(A,B)] .
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Again

θ(d(x2, x3)) = θ(d(Tx1, Tx2))

≤ αφ [θ (d(x1, x2))] + (1− α)θ (d(A,B))

< αθ (d(x1, x2)) + (1− α)θ (d(A,B)) .

By Lemma 2.4, we get

θ(d(x2, x3))− d(A,B) < α [θ (d(x1, x2))− θ (d(A,B))]

≤ α2 [θ (d(x0, x1))− θ (d(A,B))] .

Recursively we obtain that for α ∈ ]0, 1[,

θ(d(xn, xn+1))− d(A,B) < αn [θ (d(x0, x1))− θ (d(A,B))] .

This implies that

lim
n→∞ θ(d(xn, xn+1)) = θ(d(A,B)).

Since θ is increasing,

lim
n→+∞(d(xn, xn+1)) = d(A, B).

That is,

lim
n→+∞(d(xn, Txn)) = d(A,B).

This completes the proof. ¤

Theorem 3.9. Let A and B be two nonempty closed subsets of a complete metric
space X and T : A∪B → A∪B be a cyclic θ-contraction mapping. Let x0 ∈ A∪B

and xn+1 = Txn for all n ∈ N. If {x2n} has a convergent subsequence in A, then
there exists x ∈ A such that d(x, Tx) = d(A,B).

Proof. Let {x2nk
} be a subsequence of {x2n} with x2nk

→ x ∈ A. Since

(3.6) d(A,B) ≤ d(x, x2nk
) ≤ d(x, x2nk−1

) + d(x2nk−1
, x2nk

)

for all k ≥ 1, by Proposition 3, letting n →∞ in (3.6), we have

d(A,B) ≤ d(x, x2nk
) ≤ d(x, x2nk−1

) ≤ d(A,B)

and so d(x, x2nk
) → d(A,B) as k →∞.

Again

d(A,B) ≤ d(x2nk
, Tx) = d(Tx2nk−1

, Tx) ≤ d(x2nk−1
, x)

for all k ≥ 1 and hence d(x, Tx) = d(A,B). ¤
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Theorem 3.10. Let A and B be two nonempty closed subsets of a complete metric
space X and T : A ∪ B → A ∪ B be a cyclic θ-φ-contraction. Let x0 ∈ A ∪ B and
xn+1 = Txn for all n ∈ N. If {x2n} has a convergent subsequence in A, then there
exists x ∈ A such that d(x, Tx) = d(A, B).

Proof. Let {x2nk
} be a subsequence of {x2n} with x2nk

→ x ∈ A. Since

(3.7) d(A,B) ≤ d(x, x2nk
) ≤ d(x, x2nk−1

) + d(x2nk−1
, x2nk

)

for all k ≥ 1, by Proposition 3.8, letting n →∞ in 3.7, we have

d(A,B) ≤ lim
k→+∞

d(x, x2nk
) ≤ d(A,B)

and so d(x, x2nk
) → d(A,B) as k →∞.

Again

d(A,B) ≤ d(x2nk
, Tx) = d(Tx2nk−1

, Tx) ≤ d(x2nk−1
, x)

for all k ≥ 1 and hence d(x, Tx) = d(A,B). ¤

Now we present the following lemmas from [5] in order to prove our best proximity
result of cyclic θ-contraction and θ-φ-contraction in uniformly convex Banach space.

Lemma 3.11 ([5]). Let A be a nonempty closed and convex subset and B be a
nonempty closed subset of a uniformly convex Banach space. Let {xn} and {yn} be
sequences in A and {zn} be a sequence in B satisfying

(i) ‖xn − yn‖ → d(A,B);
(ii) for every ε > 0 there exists N0 such that for all m > n > N0, ‖xm − yn‖ ≤

d(A,B) + ε.

Then for every ε > 0 there exists N1 such that for all m > n > N1, ‖xm − zn‖ ≤ ε.

Lemma 3.12 ([5]). Let A be a nonempty closed and convex subset and B be a
nonempty closed subset of a uniformly convex Banach space. Let {xn} and {yn} be
sequences in A and {zn} be a sequence in B satisfying

(i) ‖xn − yn‖ → d(A,B);
(ii) ‖yn − zn‖ → d(A,B).

Then ‖xn − zn‖ → 0.

Theorem 3.13. Let A and B be two nonempty closed and convex subsets of a
uniformly convex Banach space. Suppose that T : A ∪ B → A ∪ B is a cyclic θ-
contraction. Then there exists a unique best proximity point x ∈ A with ‖x−Tx‖ =
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d(A,B). Further, if x0 ∈ A and xn+1 = Txn, then {x2n} converges to the best
proximity point.

Proof. Suppose that d(A,B) 6= 0. Then by Proposition 3,

‖x2n − x2n+1‖ = ‖x2n − Tx2n‖ → d(A, B)

and

‖x2n+2 − x2n+1‖ = ‖T 2x2n − Tx2n‖ → d(A,B).

Then by Lemma 3.12, ‖x2n+2 − x2n‖ → 0. Similarly, we can show that ‖Tx2n+2 −
Tx2n‖ → 0.

We now show that for every ε > 0 there exists N0 such that for all m > n > N0,
‖x2m−Tx2n‖ ≤ d(A,B) + ε. Let ε > 0. If possible, suppose that for all k ∈ N there
exist mk > nk ≥ k such that

‖x2mk
− Tx2nk

‖ ≥ d(A, B) + ε

and

‖x2mk−1
− Tx2nk

‖ ≤ d(A,B) + ε.

Now,

d(A,B) + ε ≤ ‖x2mk
− Tx2nk

‖
≤ ‖x2mk

− x2mk−1
‖+ ‖x2mk−1

− Tx2nk
‖

≤ ‖x2mk
− x2mk−1

‖+ d(A,B) + ε.

Thus

lim
k→+∞

‖x2mk
− Tx2nk

‖ = d(A,B) + ε.

Consequently,

‖x2mk
− Tx2nk

‖ ≤ ‖x2mk
− x2(mk+1)‖

+ ‖x2(mk+1) − Tx2(nk+1)‖+ ‖x2(nk+1) − Tx2nk
‖.

Since θ is continuous and increasing, we get

θ (‖x2mk
− Tx2nk

‖)
≤ θ

[‖x2mk
− x2(mk+1)‖+ ‖x2(mk+1) − Tx2(nk+1)‖+ ‖x2(nk+1) − Tx2nk

‖]

= θ
[‖x2mk

− x2(mk+1)‖+ ‖Tx2mk+1 − Tx2nk+2‖+ ‖x2(nk+1) − Tx2nk
‖] .
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Thus

lim
k→+∞

θ (‖x2mk
− Tx2nk

‖)

= θ

(
lim

k→+∞
‖x2mk

− Tx2nk
‖
)

≤ θ

[
lim

k→+∞
‖x2mk

− x2(mk+1)‖+ ‖Tx2mk+1 − Tx2nk+2‖+ ‖x2(nk+1) − Tx2nk
‖
]

= θ

[
lim

k→+∞
‖Tx2mk+1 − Tx2nk+2‖

]
.

Since T is a cyclic θ-contraction, we get

lim
k→+∞

θ (‖x2mk
− Tx2nk

‖)

≤ α

[
θ

(
lim

k→+∞
‖x2mk+1 − x2nk+2‖

)]k

+ (1− α)θ (D(A,B))

= α lim
k→+∞

[
θ
(‖Tx2mk

− T 2x2nk
‖)]k + (1− α)θ (d(A,B))

< α lim
k→+∞

[
θ
(‖Tx2mk

− T 2x2nk
‖)] + (1− α)θ (d(A, B))

≤ α

[
α lim

k→+∞
[θ (‖x2mk

− Tx2nk
‖)]k + (1− α)θ (d(A,B))

]
+ (1− α)θ (d(A,B))

= α2 lim
k→+∞

[
[θ (‖x2mk

− Tx2nk
‖)]k + (1− α2)θ (d(A,B))

]
.

Since lim
k→+∞

‖x2mk
− Tx2nk

‖ = d(A,B) + ε, we have

θ (d(A, B) + ε) ≤ α2 [θ (d(A,B) + ε)]k + (1− α2)θ (d(A,B))

< α2θ (d(A,B) + ε) + (1− α2)θ (d(A,B)) .

Hence

θ (d(A, B) + ε) < θ (d(A,B)) ,

which is a contradiction. Therefore {2xn} is a Cauchy sequence by Lemma 3.11 and
hence it converges to some x ∈ A. From Proposition 3, it follows that ‖x − Tx‖ =
d(A,B). Suppose that x, y ∈ A and x 6= y such that ‖x − Tx‖ = d(A,B) and
‖y − Ty‖ = d(A,B), where, necessarily, T 2x = x and T 2y = y. By Remark 2.2, we
have

‖Tx− y‖ = ‖Tx− T 2y‖ < ‖x− Ty‖,

‖Ty − x‖ = ‖Ty − T 2x‖ < ‖y − Tx‖,



BEST PROXIMITY POINT THEOREMS FOR CYCLIC θ-φ-CONTRACTION 349

which imply ‖Ty − x‖ < ‖y − Tx‖ < ‖Ty − x‖, which is a contradiction. Thus
x = y. ¤

Theorem 3.14. Let A and B be two nonempty closed and convex subsets of a
uniformly convex Banach space. Suppose that T : A ∪ B → A ∪ B is a cyclic θ-φ-
contraction. Then there exists a unique best proximity point x ∈ A with ‖x−Tx‖ =
d(A,B). Further, if x0 ∈ A and xn+1 = Txn, then {x2n} converges to the best
proximity point.

Proof. Suppose that d(A,B) 6= 0. Then by Proposition 3.8,

‖x2n − x2n+1‖ = ‖x2n − Tx2n‖ → d(A, B)

and

‖x2n+2 − x2n+1‖ = ‖T 2x2n − Tx2n‖ → d(A,B).

Then by Lemma 3.12, ‖x2n+2 − x2n‖ → 0. Similarly, we can show that ‖Tx2n+2 −
Tx2n‖ → 0.

We now show that for every ε > 0 there exists N0 such that for all m > n > N0,
‖x2m−Tx2n‖ ≤ d(A,B)+ ε. Let ε > 0. If possible, suppose for all k ∈ N there exist
mk > nk ≥ k such that,

‖x2mk
− Tx2nk

‖ ≥ d(A, B) + ε

and

‖x2mk−1
− Tx2nk

‖ ≤ d(A,B) + ε.

As in the proof of Theorem 3.13, we conclude that

lim
k→+∞

‖x2mk
− Tx2nk

‖ = d(A,B) + ε.

Consequently,

‖x2mk
− Tx2nk

‖ ≤ ‖x2mk
− x2(mk+1)‖

+ ‖x2(mk+1) − Tx2(nk+1)‖+ ‖x2(nk+1) − Tx2nk
‖

Since θ is continuous and increasing, we get

θ (‖x2mk
− Tx2nk

‖)
≤ θ

[‖x2mk
− x2(mk+1)‖+ ‖x2(mk+1) − Tx2(nk+1)‖+ ‖x2(nk+1) − Tx2nk

‖]

= θ
[‖x2mk

− x2(mk+1)‖+ ‖Tx2mk+1 − Tx2nk+2‖+ ‖x2(nk+1) − Tx2nk
‖] .
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Thus

lim
k→+∞

θ (‖x2mk
− Tx2nk

‖)

= θ

(
lim

k→+∞
‖x2mk

− Tx2nk
‖
)

≤ θ

[
lim

k→+∞
‖x2mk

− x2(mk+1)‖+ ‖Tx2mk+1 − Tx2nk+2‖+ ‖x2(nk+1) − Tx2nk
‖
]

= θ

[
lim

k→+∞
‖Tx2mk+1 − Tx2nk+2‖

]
.

Since T is a cyclic θ-φ-contraction, θ is continuous and increasing and φ is continuous
and increasing, we get

lim
k→+∞

θ (‖x2mk
− Tx2nk

‖)

≤ αφ

[
θ

(
lim

k→+∞
‖x2mk+1 − x2nk+2‖

)]
+ (1− α)θ (D(A,B))

= α lim
k→+∞

φ
[
θ
(‖Tx2mk

− T 2x2nk
‖)] + (1− α)θ (d(A,B))

< α lim
k→+∞

[
θ
(‖Tx2mk

− T 2x2nk
‖)] + (1− α)θ (d(A,B))

≤ α

[
α lim

k→+∞
φ [θ (‖x2mk

− Tx2nk
‖)] + (1− α)θ (d(A,B))

]
+ (1− α)θ (d(A, B))

= α2 lim
k→+∞

[
φ [θ (‖x2mk

− Tx2nk
‖)] + (1− α2)θ (d(A, B))

]
.

Since lim
k→+∞

‖x2mk
− Tx2nk

‖ = d(A,B) + ε, by Lemma 2.4, we have

θ (d(A, B) + ε) ≤ α2φ [θ (d(A,B) + ε)] + (1− α2)θ (d(A,B))

< α2θ (d(A,B) + ε) + (1− α2)θ (d(A,B)) .

Hence

θ (d(A, B) + ε) < θ (d(A,B)) ,

which is a contradiction. Therefore, {x2n} is a Cauchy sequence by Lemma 3.11 and
hence it converges to some x ∈ A. From Proposition 3.8, it follows that ‖x−Tx‖ =
d(A,B). Suppose that x, y ∈ A and x 6= y such that ‖x − Tx‖ = d(A,B) and
‖y − Ty‖ = d(A,B), where, necessarily, T 2x = x and T 2y = y. By Remark 2.6, we
conclude that

‖Tx− y‖ = ‖Tx− T 2y‖ < ‖x− Ty‖
and

‖Ty − x‖ = ‖Ty − T 2x‖ < ‖y − Tx‖,
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which imply ‖Ty−x‖ = ‖Tx−y‖. But, since ‖y−Tx‖ > dist(A,B), it follows that
‖Tx− y‖ < ‖Tx− y‖, which is a contradiction. Thus x = y. ¤

Declarations

Availablity of data and materials
Not applicable.

Conflict of interest
The authors declare that they have no competing interests.

Fundings
Not applicable.

References

1. S. Banach: Sur les opérations dans les ensembles abstraits et leur application aux
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