• 제목/요약/키워드: proton translocation

검색결과 8건 처리시간 0.025초

Growth and Physiological Properties of Wild Type and Mutants of Halomonas subglaciescola DH-l in Saline Environment

  • Ryu, Hye Jeong;Jeong, Yoo Jung;Park, Doo Hyun
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.174-180
    • /
    • 2004
  • A halophilic bacterium was isolated from fermented seafood. The 16S rDNA sequence identity between the isolate and Halomonas subglaciescola AJ306801 was above 95%. The isolate that did not grow in the condition without NaCl or in the condition with other sodium (Na$\^$+/) or chloride ions (Cl$\^$-/) instead of NaCl was named H. subglaciescola DH-l. Two mutants capable of growing without NaCl were obtained by random mutagenesis, of which their total soluble protein profiles were compared with those of the wild type by two-dimensional electrophoresis. The external compatible solutes (betaine and choline) and cell extract of the wild type did not function as osmoprotectants, and these parameters within the mutants did not enhance their growth in the saline environment. In the proton translocation test, rapid acidification of the reactant was not detected for the wild type, but it was detected for the mutant in the condition without NaCl. From these results, we derived the hypothesis that NaCl may be absolutely required for the energy metabolism of H. subglaciescola DH-l but not for its osmoregulation, and the mutants may have another modified proton translocation system that is independent of NaCl, except for those mutants with an NaCl-dependent system.

Influence of NaCl on the Growth and Metabolism of Halomonas salina

  • YUN , SU-HEE;SANG , BYUNG-IN;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.118-124
    • /
    • 2005
  • In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

Characterization of a Xanthorhodopsin-homologue from the North Pole

  • Kim, Se Hwan;Cho, Jang-Cheon;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • 제2권2호
    • /
    • pp.60-63
    • /
    • 2013
  • Rhodopsins belong to a family of membrane-embedded photoactive retinylidene proteins. One opsin gene was isolated from ${\beta}$-proteobacterium (IMCC9480) which had been collected at the North Pole. It is very similar to Xanthorhodopin (XR) of HTCC2181. In this study, we carried out basic characterization of the rhodopsin. It has ${\lambda}max$ of 536, 554, and 546 nm at pH 4.0, 7.0, and 10.0, respectively. Since the pKa of its proton acceptor is around 6.27, we measured its proton pumping activity and photocycling rate at pH 8.0. It has a typical proton acceptor (D99) and donor (E110) which mediate proton translocation from intracellular to extracellular region when deduced from the sequence alignments. On the basis of in vitro proton pumping activity, it was proposed to have fast photocycling rate with M and O intermediates, indicating that it is a typical ion-pumping rhodopsin. Since the XR has not yet been expressed in any other heterologous expression system, we tried to get much more information about the XR through the XR-homologue rhodopsin.

Time-resolved Anisotropy Study on the Excited-State Intramolecular Proton Transfer of 1-Hydroxyanthraquinone

  • Choi, Jun-Rye;Jeoung, Sae-Chae;Cho, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1675-1679
    • /
    • 2003
  • The photodynamics of excited-state intramolecular proton transfer reaction of 1-hydroxyanthraquinone (1-HAQ) and 1-deuterioanthraquinone was investigated in toluene with time-resolved emission and femtosecond transient transmittance techniques at room temperature. The temporal profiles of transient transmittance of 1-HAQ could be well described with multi-decaying time constants. The ultrafast time constant within ca. 260 fs reflects the dynamics of proton transfer. The decay component of 2 ps is assigned to an additional proton translocation process induced by the intramolecular vibrational relaxation, whereas the decay component of 18 ps is assigned to the vibrational cooling process, while the long component (200 ps) can be explained in terms of the relaxation from excited-state keto-tautomer to its ground state. Time-resolved anisotropy decay dynamics and isotope effects on the photodynamics reveals that the ESIPT from enol-tautomer to keto-one of 1-HAQ is barrierless reaction and coupled to a vibrational relaxation process.

Oxygen-dependent Respiration and Proteon Extrusion in Wolinella Succinogenes

  • Han, Yeong-Hwan
    • 미생물학회지
    • /
    • 제30권6호
    • /
    • pp.432-437
    • /
    • 1992
  • When $H^{2}$ was provided as the electron donor, optimum $O_{2}$ levels for growth of Wolinella succinogenes ATCC 29543 were 2% and 8% on brucella agar and in brucella broth, respectively. No growth occurred under 21% $O_{2}$, and scant or no growth occurred under anaerobic condition. $O_{2}$ uptake was inhibited by cyanide and 2-heptyl-4-hydroxyquinoline N-oxide. Protons were translocated out of the cell when oxygen was used as the terminal electron accetor. The $H^{+}$/O ratio with $H_{2}$ and formate as an electron donor were 1, 97 and 1.49, respectively. Proton translocation was inhibited by the protonophore carbonylcyanide m-chlorophenylhydrazone.e.

  • PDF

광합성산물의 아포플라스트 체관부적재 기작 (Apoplastic Phloem Loading of Photoassimilate)

  • 김성문;허장현;한대성
    • 한국잡초학회지
    • /
    • 제17권4호
    • /
    • pp.345-361
    • /
    • 1997
  • Photoassimilates translocate from regions of carbohydrate synthensis(source) to regions of carbohydrate utilization or storage(sink). In the source, assimilate loads into the phloem for long-distance transport. Current evidence suggests that there are twig loading mechanisms : one involves assimilate transfer via the apoplasm and then load into the phloem by carrier-mediated proton-sucrose cotransport, while the other involves movement through the continuous symplastic connections between the mesophyll cells and the phloem. Inspite of problems associated with the interpretation of experiments, the evidence for apoplastic loading remains convincing because the apoplastic loading systems explains well the observed accumulation capacity arid the selectivity of assimilate uptake by tile phloem.

  • PDF

Isolation and Characterization of Endosome Subpopulation in Chinese Hamster Ovarian Cells

  • Suh, Duk-Joon;Park, Mi-Yeon;Jung, Dong-Keun;Bae, Hae-Rahn
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.197-208
    • /
    • 1996
  • Endosomes lower their internal pH by an ATP-driven proton pump, which is critical to dissociation of many receptor-ligand complexes, the first step in the intracellular sorting of internalized receptors and ligands. Endosomes are known to exhibit n great range of pH values that can vary between 5.0 and 7.0 within a single cell although the factors that regulate endosomal pH remain uncertain. To evaluate the morphological and topological differences of endosomes in the different stages, confocal microscopy was used. The early endosomes labeled with fluorescein isothiocyanate-dextran for 10 min at $37^{\circ}C$ were identifiable at the peripheral and tubule-vesicular endosome compartment. In contrast, the late endosomes formed by 10 min pulse and 20 min trace were located deeper in the cytoplasm and showed more vesicular features than early endosomes. For the purpose of determining whether ATP-dependent acidification was heterogeneous and whether the differences in acidification were attributed to differences in the activity of $Na^{+}-K^{+}$-ATPase and/or $Cl^{-}$ channel, endocytic compartments were fractionated into subpopulation using percoll gradient and measured ATP-dependent acidification. While all fractions exhibited ATP-dependent acidification activity, both the initial rate of acidification and extent of proton translocation were lower in early endosomes and gradually increased in late endosomes. Phosphorylation by PKA and ATP enhanced ATP-dependent acidification in both early and late endosomes, hut there was no difference in the degree of enhancement by phosphorylation between two subpopulations. When ATP-dependent acidification was determined in the presence or absence of vanadate ($Na_{3}VO_{4}$) or ouabain, only early endosomes exhibited the vanadate or ouabain dependent stimulation of acidification activity, suggesting the inhibition of $Na^{+}-K^{+}$-ATPase. Therefore, it seems probable that the inhibition of early endosome acidification by $Na^{+}-K^{+}$-ATPase observed in vitro at least in part plays a physiological role in controlling the acidification of early endosomes in vivo.

  • PDF

Local ablative radiotherapy for oligometastatic non-small cell lung cancer

  • Suh, Yang-Gun;Cho, Jaeho
    • Radiation Oncology Journal
    • /
    • 제37권3호
    • /
    • pp.149-155
    • /
    • 2019
  • In metastatic non-small cell lung cancer (NSCLC), the role of radiotherapy (RT) has been limited to palliation to alleviate the symptoms. However, with the development of advanced RT techniques, recent advances in immuno-oncology therapy targeting programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) and targeted agents for epidermal growth factor receptor (EGFR) mutation or anaplastic lymphoma kinase (ALK) translocation allowed new roles of RT in these patients. Within this metastatic population, there is a subset of patients with a limited number of sites of metastatic disease, termed as oligometastasis that can achieve long-term survival from aggressive local management. There is no consensus on the definition of oligometastasis; however, most clinical trials define oligometastasis as having 3 to 5 metastatic lesions. Recent phase II randomized clinical trials have shown that ablative RT, including stereotactic ablative body radiotherapy (SABR) and hypofractionated RT, to primary and metastatic sites improved progression-free survival (PFS) and overall survival (OS) in patients with oligometastatic NSCLC. The PEMBRO-RT study, a randomized phase II study comparing SABR prior to pembrolizumab therapy and pembrolizumab therapy alone, revealed that the addition of SABR improved the overall response, PFS, and OS in patients with advanced NSCLC. The efficacy of RT in oligometastatic lung cancer has only been studied in phase II studies; therefore, large-scale phase III studies are needed to confirm the benefit of local ablative RT in patients with oligometastatic NSCLC. Local intensified RT to primary and metastatic lesions is expected to become an important treatment paradigm in the near future in patients with metastatic lung cancer.