• Title/Summary/Keyword: protocatechuate

Search Result 19, Processing Time 0.024 seconds

Characterization of different Dioxygenases isolated from Delftia sp. JK-2 capable of degrading Aromatic Compounds, Aniline, Benzoate, and p-Hydroxybenzoate (방향족 화합물인 Aniline, benzoate, p-Hydroxybenzoate를 분해하는 Delftia sp. JK-2에서 분리된 Dioxygenases의 특성연구)

  • 오계헌;황선영;천재우;강형일
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • The aim of this work was to investigate the purification and characterization dixoygenases isolated from Delftia sp. JK-2, which could utilize aniline, benzoate, and p-hydroxybenoate as sole carbon and energy source. Catechol 1,2-dioxygenase (C1, 2O), catechol 2,3-dioxygenase(C2, 3O), and protocatechuate 4,5-dioxygenase(4,5-PCD) were isolated by benzoate, aniline, and p-hydroxybenzoate. In initial experiments, several characteristics of C1 ,2O, C2, 3O, and 4,5-PCD separated with ammonium sulfate precipitation, DEAE-sepharose, and Q-sepharose were investigated. Specific activity of C1 ,2O, C2, 3O, and 4,5-PCD were approximately 3.3 unit/mg, 4.7 unit/mg, and 2.0 unit/mg. C1 ,2O and C2, 3O demonstrated their enzyme activities to other substrates, catechol and 4-methylcatechol. 4,5-PCD showed the specific activity to the only substrate, protocatechuate, but the substrates(e.g., catechol, 3-methylcatechol, 4-methylcatechol, 4-chlorocatechol, 4-nitrocatechol) did not show any specific activities in this work. The optimum temperature of C1, 2O, C2, 3O, and 4,5-PCD were 30$^{\circ}C$, and the optimal pHs were approximately 8, 8, and 7, respectively. Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/ showed inhibitory effect on the activity of C1, 2O and C2, 3O, but Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/, Fe$\^$3+/ showed inhibitory effect on the activity of 4,5-PCD. Molecular weight of the C1, 2O, C2, 3O, and 4,5-PCD were determined to approximately 60 kDa,35 kDa, and 62 kDa by SDS-PAGE.

Characterization of Aromatic Hydrocarbon Degrading Bacteria Isolated from Pine Litter (솔잎 퇴적물에서 추출한 방향족 탄화수소물질 분해 박테리아의 동정)

  • Song, Yoon-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • Using a novel pine needle agar, fifteen bacterial species were isolated from pine litter. These bacteria were able to degrade aromatic hydrocarbons derived from lignin and utilize the ortho-cleavage of the $\beta$-ketoadipate pathway to degrade protocatechuate or catechol. A different utilization array of aromatic hydrocarbons by these bacteria was also determined. This study provides the information on bacterial species living in pine litter and suggests that these bacteria have metabolic abilities to utilize aromatic hydrocarbons derived from lignin biodegradation.

오가피 및 작약으로부터 혈소판 응집 억제작용 물질의 개발에 관한 연구

  • 윤혜숙;강삼식
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.20-20
    • /
    • 1992
  • 혈관내에서의 비정상적인 혈소판의 활성화는 혈소판 응괴 또는 혈전 형성을 초래함으로서 동맥경화증, 심근 경색증, 혈전중등의 허혈성 질환의 발현에 직접 또는 간접적인 원인으로서 주목되고 있다. 본 연구자 등은 천연물로부터 혈소판 응집억제작용 물질의 개발을 목표로 하여 한약 또는 민간약의 형태로서 관련질환에 사용되어온 식물생약 약 40종을 검색하였으며 이들중 혈소판 응집억제작용을 갖는 식물로부터 작용 물질의 분리를 계속하여 오고있다. 본 실험에서는 작약을 메타놀로 추출하고 작용을 추적하면서 용매로 분획하였으며, 작용분획인 Et0Ac fr.으로부터 methyl gallate를 분리하였다. Methyl gallate는 오가피로부터 작용성분으로서 이미 분리 보고된 protocatechuic acid 및 artifact인 ethyl protocatechuate와 구조적으로 매우 유사하여 이들 analogs 수종에 대하여 작용을 비교 검색하였다.

  • PDF

Phenanthrene biodegradation by Pseudonocardia hydrocarboxydans and Pseudomonas putida in presence of metabolic inducers

  • 조화영;신성호;우승한;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.340-343
    • /
    • 2003
  • Soils contaminated by hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), have become a major environmental issue due to toxic and carcinogenic properties of those compounds. In this work, we investigated effects of various metabolic inducers on phenanthrene biodegradation. Biodegradation tests were peformed with two different Pseudomonads: Pseudononrdia hydrocarboxydans (Gram positive) and Pseudomonas putida (Gram negative). Intermediates of phenanthrene metabolism (1-hydroxy-2-naphthoate, salicylate, catechol, phthalate and protocatechuate) were selected as inducers. The tests indicated that 1-hydroxy-2-naphthoate was the most effective inducer and enhanced the phenanthrene degradation rate up to 5.7 times, even though all the others also had induction ability to some extent. The effective induction could be achieved even at a low concentration of 1-hydroxy-2-naphthoate. Addition of metabolic inducers would be an attractive trick for the successful bioremediation of PAH-contaminated soil.

  • PDF

Enzymes of White-rot Fungi Cooperate in Biodeterioration of Lignin Barrier (목질리그닌의 생물학적 분해시 백색 부후균류 효소들의 상호작용)

  • Leonowicz, Andrzej;Cho, Nam-Seok;Wasilewska, Maria W.;Rogalski, Jerzy;Luterek, Jolanta
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-20
    • /
    • 1997
  • 목재를 분해시키는 담자균류들은 목재 및 목질복합체에 쉽사리 침투하여 복잡한 리그노셀룰로오스 복합체를 분해시킨다. 이러한 분해에는 많은 효소시스템들이 복합적으로 작용하면서 상호 협동하는 것으로 보고되고 있다. 지금까지 일려진 효소들은 통상 3개의 그룹으로 나눌 수 있는데 그 하나는 목재성분을 직접적으로 공격하는 효소균들, 예를 들면 cellulase complex, laccase(LAC), lignin peroxidase(LIP), horse-radish peroxidase(HRP), manganese-independent peroxidase(MIP) 및 protocatechuate 3,4-dioxygenase(PCD) 등이 있고, 두번째 그룹으로서 manganese-dependent peroxidase(MnP), aryl alcohol oxidase(AAO) 및 glyoxal oxidase(GLO) 등인데, 이들 효소들은 목질을 직접적으로 공격하지 않고 제1그룹의 효소들과 협동하여 작용하는 것으로 알려지고 있다. 제3그룹의 효소들은 glucose oxidase(GOD) 및 cellobiose : quinone oxidoreductase(CBQ)로서 feedback type의 효소들로서 목재고분자의 분해시 대사의 고리를 결합시켜 주는 매우 중요한 기능을 하는 효소군들이다. 그러나 이 이외에도 다른 분해기구가 밝혀지고 있으며 기타 효소들에 의한 리그노셀룰로오스의 분해반응기구의 해명에는 상당한 시간이 걸릴 것으로 사료된다.

  • PDF

Characterization of Trichloroethylene and Phenol Degradation by Acinetobaeter sp. T5-7 (Acinetobacter sp. T5-7에 의한 Phenol과 Trichloroethylene 분해특성)

  • Hong, Sung-Yong;Lee, Suk-Hee;Lee, Jung-Hae;Ha, Ji-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.255-262
    • /
    • 1995
  • Intact cells of Acinetobacter sp. T5-7 completely degraded trichloroethylene (TCE) following growth with phenol. This strain could grow on at least eleven aromatic compounds, e.g., benzaldehyde, benzene, benzoate, benzylalochol, catechol, caffeic acid, 2.4-D, p-hydroxybenzoate, phenol, protocatechuate and salicylate, and did grow on alkane, such as octane. But except phenol, other aromatic compounds did not induced TCE degradation. Phenol biotransformation products, catechol was identified in the culture media. However, catechol-induced cells did not degrade TCE. So we assumed that phenol hydroxylase was responsible for the degradation of TCE. The isolate T5-7 showed growth in MM2 medium containing sodium lactate and catechol rather than phenol, but did not display phenol hydroxyalse activity, suggesting induction of enzyme synthesis by phenol. Phenol hydroxylase activity was independent of added NADH and flavin adenine dinucleotide but was dependent on NADPH addition. Degradation of phenol produced catechols which are then cleaved by meta-fission. We identified catechol-2.3-dioxygenase by active staining of polyacrylamide gel.

  • PDF

Identification of a p-Cresol Degradation Pathway by a GFP-Based Transposon in Pseudomonas and Its Dominant Expression in Colonies

  • Cho, Ah-Ra;Lim, Eun-Jin;Veeranagouda, Yaligara;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1179-1183
    • /
    • 2011
  • In this study, the chromosome-encoded pcuRCAXB genes that are required for p-cresol degradation have been identified by using a newly constructed green fluorescent protein (GFP)-based promoter probe transposon in the long-chain alkylphenol degrader Pseudomonas alkylphenolia. The deduced amino acid sequences of the genes showed the highest identities at the levels of 65-93% compared with those in the databases. The transposon was identified to be inserted in the pcuA gene, with the promoterless gfp gene being under the control of the pcu catabolic gene promoter. The expression of GFP was positively induced by p-cresol and was about 10 times higher by cells grown on agar than those in liquid culture. In addition, p-hydroxybenzoic acid was detected during p-cresol degradation. These results indicate that P. alkylphenolia additionally possesses a protocatechuate ortho-cleavage route for p-cresol degradation that is dominantly expressed in colonies.

Characterization of $\beta$-Ketoadipate Pathway from Multi-Drug Resistance Bacterium, Acinetobacter baumannii DU202 by Proteomic Approach

  • Park, Soon-Ho;Kim, Jae-Woo;Yun, Sung-Ho;Leem, Sun-Hee;Kahng, Hyung-Yeel;Kim, Seung-Il
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.632-640
    • /
    • 2006
  • In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate, and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase $\alpha$ subunit (BenA)] of the $\beta$-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenas $\alpha$ subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaR)] of the $\beta$-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the $\beta$-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADPI. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different $\beta$-ketoadipate pathway from other Acinetobacter species.

Catabolic Degradation of 4-Chlorobiphenyl by Pseudomonas sp. DJ-12 via Consecutive Reaction of meta-Cleavage and Hydrolytic Dechlorination

  • Chae, Jong-Chan;Kim, Eunheui;Park, Sang-Ho;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.449-455
    • /
    • 2000
  • Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of the meta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-cleavage of protocatechuate. The pcbC gene responsible for the meta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that of Pseudomonas sp. CBS3, yet only a 50% homology with that of Arthrobacter spp. However, the fcb genes for the hydrolytic dechlorination of 4CBA in Pseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBA completely via meta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.

  • PDF