Characterization of Aromatic Hydrocarbon Degrading Bacteria Isolated from Pine Litter

솔잎 퇴적물에서 추출한 방향족 탄화수소물질 분해 박테리아의 동정

  • 송윤재 (경원대학교 생명과학과)
  • Published : 2009.12.28

Abstract

Using a novel pine needle agar, fifteen bacterial species were isolated from pine litter. These bacteria were able to degrade aromatic hydrocarbons derived from lignin and utilize the ortho-cleavage of the $\beta$-ketoadipate pathway to degrade protocatechuate or catechol. A different utilization array of aromatic hydrocarbons by these bacteria was also determined. This study provides the information on bacterial species living in pine litter and suggests that these bacteria have metabolic abilities to utilize aromatic hydrocarbons derived from lignin biodegradation.

새로운 pine needle agar를 이용하여 15종의 박테리아를 솔잎퇴적물에서 추출하여 동정하였다. 이들 박테리아는 lignin biodegradation에서 주로 유도되는 방향족 탄화수소물질을 $\beta$-ketoadipate pathway의 ortho-cleavage를 이용하여 분해하는 것으로 밝혀졌다. 나아가서 이들 박테리아에 의한 여러 종의 방향족 탄화수소물질 분해에 관해서도 조사하였다. 본 연구는 솔잎 퇴적물에 존재하는 박테리아 종들이 방향족 탄화수소물질을 분해할 수 있는 대사능력을 가지고 있다는 것을 검증하였다.

Keywords

References

  1. Colberg, P. J., and L. Y. Young. 1985. Aromatic and Volatile Acid Intermediates Observed during Anaerobic Metabolism of Lignin-Derived Oligomers. Appl. Environ. Microbiol. 49:350-358
  2. Crawford, D. L., A. L. Pometto, and R. L. Crawford. 1983. Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45: 898-904
  3. Crawford, R. L. 1975. Novel pathway for degradation of protocatechuic acid in Bacillus species. J. Bacteriol. 121: 531-536
  4. Crawford, R. L., J. W. Bromley, and P. E. Perkins-Olson. 1979. Catabolism of protocatechuate by Bacillus macerans. Appl. Environ. Microbiol. 37: 614-618
  5. Crawford, R. L., S. W. Hutton, and P. J. Chapman. 1975. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J. Bacteriol. 121: 794-799
  6. Dagley, S. 1971. Catabolism of aromatic compounds by micro-organisms. Adv. Microb. Physiol. 6: 1-46 https://doi.org/10.1016/S0065-2911(08)60066-1
  7. Gerhardt, P., G. Murray, R. Costilow, E. Nester, W. Wood, N. Krieg, and G. Phillips. 1981. Manual of methods for general bacteriology. American Society for Microbiology, Washington, D. C
  8. Haritash, A. K., and C. P. Kaushik. 2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater
  9. Harwood, C. S., and J. Gibson. 1988. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol. 54: 712-717
  10. Harwood, C. S., and J. Gibson. 1997. Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J. Bacteriol. 179: 301-309
  11. Harwood, C. S., and R. E. Parales. 1996. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590 https://doi.org/10.1146/annurev.micro.50.1.553
  12. Hegeman, G. D. 1966. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants. J. Bacteriol. 91: 1161-1167
  13. Kirk, T. K., and R. L. Farrell. 1987. Enzymatic 'combustion': the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-505 https://doi.org/10.1146/annurev.mi.41.100187.002341
  14. Kuipers, J. G., L. Nietfeld, U. Dreses-Werringloer, L. Koehler, J. Wollenhaupt, H. Zeidler, and M. Hammer. 1999. Optimised sample preparation of synovial fluid for detection of Chlamydia trachomatis DNA by polymerase chain reaction. Ann. Rheum. Dis. 58: 103-108 https://doi.org/10.1136/ard.58.2.103
  15. Masai, E., Y. Katayama, and M. Fukuda. 2007. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci. Biotechnol. Biochem. 71: 1-15 https://doi.org/10.1271/bbb.60437
  16. Nichols, N. N., and C. S. Harwood. 1995. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J. Bacteriol. 177: 7033-7040
  17. Ornston, L. N. 1966. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation. J. Biol. Chem. 241: 3800-3810
  18. Ottow, J. C. and W. Zolg. 1974. Improved procedure and colorimetric test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Can. J. Microbiol. 20: 1059-1061 https://doi.org/10.1139/m74-163
  19. Rodriguez, J., A. Ferraz, R. F. Nogueira, I. Ferrer, E. Esposito, and N. Duran. 1997. Lignin biodegradation by the ascomycete Chrysonilia sitophila. Appl. Biochem. Biotechnol. 62: 233-242 https://doi.org/10.1007/BF02787999
  20. Sariyildiz, T., and J. M. Anderson. 2006. Intra-specific variation in cell wall constituents of needle age classes of Pinus sylvestris in relation to soil fertility status in southwest england. Silva Fennica 40: 15-26
  21. Smith, G. L., S. S. Socransky, and C. M. Smith. 1989. Rapid method for the purification of DNA from subgingival microorganisms. Oral. Microbiol. Immunol. 4: 47-51 https://doi.org/10.1111/j.1399-302X.1989.tb00406.x
  22. Stanier, R. Y., and L. N. Ornston. 1973. The beta-ketoadipate pathway. Adv. Microb. Physiol. 9: 89-151 https://doi.org/10.1016/S0065-2911(08)60377-X
  23. ten Have, R., and P. J. Teunissen. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101: 3397-413 https://doi.org/10.1021/cr000115l
  24. Wackett, L. P., and L. B. Ellis. 1999. Predicting biodegradation. Environ. Microbiol. 1: 119-124 https://doi.org/10.1046/j.1462-2920.1999.00029.x
  25. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703