• Title/Summary/Keyword: proteomic

Search Result 504, Processing Time 0.029 seconds

Bacillus anthracis Spores Influence ATP Synthase Activity in Murine Macrophages

  • Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Ji-Cheon;Yoon, Jang-Won;Oh, Kwang-Keun;Lee, Jung-Ho;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.778-783
    • /
    • 2008
  • Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted. As a result, 13 mitochondrial proteins with different expression patterns were discovered in the infected murine macrophages, and some were identified as ATP5b, NIAP-5, ras-related GTP binding protein B isoform CRAa, along with several unnamed proteins. Among these proteins, ATP5b is related to energy production and cytoskeletal rearrangement, whereas NIAP-5 causes apoptosis of host cells due to binding with caspase-9. Therefore, this paper focused on ATP5b, which was found to be down regulated following infection. The downregulated ATP5b also reduced ATP production in the murine macrophages infected with B. anthracis spores. Consequently, this study represents the first mitochondrial proteome analysis of infected macrophages.

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

Gene Expression Changes Associated with Sustained p16 Expression in Hepatocellular Carcinoma Cells (간암세포주에서 지속적인 p16 단백질발현이 유도하는 유전자발현의 변화)

  • Oh, Sang-Jin;Im, Ji-Young;Jung, Che-Hun;Lee, Yong-Bok
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.237-243
    • /
    • 2004
  • Background: The normal functions of the cell cycle inhibitor p16INK4a are frequently inactivated in many human cancers. Over 80% of hepatocellular carcinoma (HCC) cases lack a functional p16/Rb pathway. p16/Rb pathway, as well as p53 pathway, is considered as one of key components of tumor suppression. Methods: To study the roles of p16INK4a in HCC, a stable cell line expressing exogenous p16 was generated from SNU-449 hepatocellular carcinoma cells lacking endogenous p16, and suppression subtractive hybridization (SSH) was performed in parallel with the control cells. Results: 1) SSH identifies fibronectin (FN1), crystallin ${\alpha}B$ (CRYAB), Rac1, WASP, RhoGEF, and CCT3 as differentially-expressed genes. 2) Among the selected genes, the up-regulation of FN1 and CRYAB was confirmed by Northern blot, RT-PCR and by proteomic methods. Conclusion: These genes are likely to be associated with the induction of stress fiber and stabilization of cytoskeleton. Further studies are required to clarify the possible role of p16 in the signal transduction pathway.

Opportunities and Challenges in Nutrigenomics and Health Promotion

  • Milner John A.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • Not all individuals respond identically, or at times in the same direction, to dietary interventions. These inconsistencies likely arise because of diet and genomic interactions (nutrigenomics effects). A host of factors may influence the response to bioactive food components including specific polymorphisms (nutrigenetic effect), DNA methylation patterns and other epigenomic factors (nutritional epigenomic effects), capacity to induce anuo. suppress specific mRNA expression and patterns (nutritional transcriptomics), the occurrence and activity of proteins (proteomic effects), and/or the dose and temporal changes in cellular small molecular weight compounds will not only provide clues about specificity in response to food components, but assist in the identification of surrogate tissues and biomarkers that can predict a response. While this 'discovery' phase is critical for defining mechanisms and targets, and thus those who will benefit most from intervention, its true usefulness depends on moving this understanding into 'development' (interventions for better prevention, detection, diagnosis, and treatment) and a 'delivery' phase where information is provided to those most in need. It is incumbent on those involved with food and nutrition to embrace the 'omics' that relate to nutrition when considering not only the nutritional value of foods and their food components, but also when addressing acceptability and safety. The future of 'Nutrigenomics and Health Promotion' depends on the ability of the scientific community to identity appropriate biomarkers and susceptibility variants, effective communications about the merits of such undertakings with the health care community and with consumers, and doing all of this within a responsible bioethical framework.

  • PDF

Proteomics in Rheumatoid Arthritis Research

  • Park, Yune-Jung;Chung, Min Kyung;Hwang, Daehee;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • v.15 no.4
    • /
    • pp.177-185
    • /
    • 2015
  • Although rheumatoid arthritis (RA) is the most common chronic inflammatory autoimmune disease, diagnosis of RA is currently based on clinical manifestations, and there is no simple, practical assessment tool in the clinical field to assess disease activity and severity. Recently, there has been increasing interest in the discovery of new diagnostic RA biomarkers that can assist in evaluating disease activity, severity, and treatment response. Proteomics, the large-scale study of the proteome, has emerged as a powerful technique for protein identification and characterization. For the past 10 years, proteomic techniques have been applied to different biological samples (synovial tissue/fluid, blood, and urine) from RA patients and experimental animal models. In this review, we summarize the current state of the application of proteomics in RA and its importance in identifying biomarkers and treatment targets.

Tropomyosin and triosephosphate isomerase are upregulated proteins affecting Ginseng treatments in chicken muscle

  • Jung, Kie-Chul;Choi, Kang-Duk;Jang, Byoung-Gui;Sang, Byung-Don;Lee, Jun-Heon
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.21-22
    • /
    • 2004
  • The present study was aimed to investigate proteome affected by Panax ginseng extracts in chicken muscles. More than 300 protein spots were detected on silver staining gels. Among them. four protein spots were distinctively up-regulated by Panax ginseng treatments. The up-regulated proteins were finally identified as tropomyosin (2 spots), triosephosphate isomerase, and one unknown protein. Based on the known functions of the identified proteins. they are highly related to the muscle development and enhanced immunity in chicken. These proteins can give valuable information of biochemical roles for Panax ginseng in chicken meats.

  • PDF

Root proteome analysis of Chinese cabbage in response to Plasmodipohora brassicae Woron (배추 무사마귀병 마커 탐색을 위한 배추 뿌리 단백질체 분석)

  • Jeung, Jae Yun;Lim, Yong Pyo;Hwang, Cheol Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.350-355
    • /
    • 2015
  • Clubroot disease is one of the most wide-spread and devastating diseases in the cultivation of Chinese cabbage. To develop a protein marker for resistance to clubroot disease in Chinese cabbage, a comparative proteome analysis was performed between a sensitive line, 94SK, and a resistant line, CR Shinki DH. Three proteins of two fold or higher accumulation that are specific to each line were found 3 days after innoculation of the Plasmodiphora brassicae. They are glutamine synthetase, malate dehydrogenase/oxidoreductase and fructose-bisphosphate aldolase in the 94SK and actin, phosphoglycerate kinase, and Cu/Zn superoxide dismutase in the CR Shinki line. From the comparison of the synthesized proteins in the 94SK and the CR Shinki, CR Shinki was found to produce more ATP-binding protein for the ABC transporter while 94SK showed a higher level of pathogenesis-related protein 1 production. All of these proteomic variations may lead to the development of molecular markers to accelerate the breeding process.

Photoperiodic Proteins in Plant Cells (식물세포의 일주기성 단백질)

  • Hwang, Hee-Youn;Bhoo, Seong-Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.121-125
    • /
    • 2010
  • In the past 10 years, a lot of plant circadian rhythm researches have published in molecular biology and biochemistry. We discussed with published molecular studies of circadian clock and rhythmic genes in Arabidopsis, rice and algae. However past this studies are not sufficient to explain the whole rhythmic metabolism. Recently many researchers have concerned post-transcriptional, translational and post-translational modification of rhythmic proteins. From the view point of the high-throughput study, we could suggest the proteomic analysis with 2-DE gel electrophoresis and MS/MS techniques for the identification of modified proteins.

Cellular ubiquitin pool dynamics and homeostasis

  • Park, Chul-Woo;Ryu, Kwon-Yul
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.475-482
    • /
    • 2014
  • Ubiquitin (Ub) is a versatile signaling molecule that plays important roles in a variety of cellular processes. Cellular Ub pools, which are composed of free Ub and Ub conjugates, are in dynamic equilibrium inside cells. In particular, increasing evidence suggests that Ub homeostasis, or the maintenance of free Ub above certain threshold levels, is important for cellular function and survival under normal or stress conditions. Accurate determination of various Ub species, including levels of free Ub and specific Ub chain linkages, have become possible in biological specimens as a result of the introduction of the proteomic approach using mass spectrometry. This technology has facilitated research on dynamic properties of cellular Ub pools and has provided tools for in-depth investigation of Ub homeostasis. In this review, we have also discussed the consequences of the disruption of Ub pool dynamics and homeostasis via deletion of polyubiquitin genes or mutations of deubiquitinating enzymes. The common consequence was a reduced availability of free Ub and a significant impact on the function and viability of cells. These observations further indicate that the levels of free Ub are important determinants for cellular protection.