DOI QR코드

DOI QR Code

Photoperiodic Proteins in Plant Cells

식물세포의 일주기성 단백질

  • Hwang, Hee-Youn (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • Bhoo, Seong-Hee (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University)
  • 황희연 (경희대학교 식물대사연구센터 및 생명공학원) ;
  • 부성희 (경희대학교 식물대사연구센터 및 생명공학원)
  • Received : 2010.09.09
  • Accepted : 2010.09.16
  • Published : 2010.09.30

Abstract

In the past 10 years, a lot of plant circadian rhythm researches have published in molecular biology and biochemistry. We discussed with published molecular studies of circadian clock and rhythmic genes in Arabidopsis, rice and algae. However past this studies are not sufficient to explain the whole rhythmic metabolism. Recently many researchers have concerned post-transcriptional, translational and post-translational modification of rhythmic proteins. From the view point of the high-throughput study, we could suggest the proteomic analysis with 2-DE gel electrophoresis and MS/MS techniques for the identification of modified proteins.

지난 10년간 분자 식물 일주기성에 대해 분자 생물학적, 생화학적인 연구가 많이 진행되었다. 본 연구에서는 식물의 Arabidopsis, rice 그리고 algae에서 지금까지 발표된 연구들을 종합하고 고찰해보려 했다. 그 결과, 아직까지도 주기성 대사의 모든 부분을 설명하기엔 부족한 부분이 많다는 것을 알수 있었다. 최근 주기성 단백질들의 전사후, 번역 그리고 번역후 변형과정에 대해 많은 연구자들이 관심을 갖기 시작했다. 이러한 부분에서 다량의 단백질을 한번에 볼 수 있는 2-DE gel electrophoresis와 MS/MS 기술이 절실히 요구된다고 할 수 있겠다.

Keywords

References

  1. Breton G and Kay SA (2006) Circadian rhythms lit up in Chlamydomonas. Genome Biol 7, 215. https://doi.org/10.1186/gb-2006-7-4-215
  2. Bruce VG (1970) The biological clock in Chlamydomonas reinhardtii. J Protozool 17, 328-334. https://doi.org/10.1111/j.1550-7408.1970.tb02380.x
  3. Chen M, Chory J, and Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Gent 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
  4. Daniel X, Sugano S, and Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101, 3292.3297. https://doi.org/10.1073/pnas.0400163101
  5. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, and Yoshimura A (2004) Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Fdl. Genes & Dev 18, 926-936. https://doi.org/10.1101/gad.1189604
  6. Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW et al. (2006) FLOWERING LOCUS C mediated natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639-650. https://doi.org/10.1105/tpc.105.038315
  7. Farre EM and Kay SA (2007) PRR7 protein levels are regulated by light and the circadian clocks in Arabidopsis. Plant J 52, 548-60. https://doi.org/10.1111/j.1365-313X.2007.03258.x
  8. Fujiwara S, Wang L, Han L, Suh SS et al. (2008) Posttranslational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudoresponse regulator proteins. J Biol Chem 283, 23073-23083. https://doi.org/10.1074/jbc.M803471200
  9. Gallego M and Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8, 139-148. https://doi.org/10.1038/nrm2106
  10. Gardner MJ, Hubbard KE, Hotta CT, Dodd AN, and Webb AAR (2006) How plants tell the time. Biochem J 397, 15-24. https://doi.org/10.1042/BJ20060484
  11. Han L, Mason M, Risseeuw EP, Crosby WL, and Somers DE (2004) Formation of an SCF (ZTL) complex is required for proper regulation of circadian timing. Plant J 40, 291-301. https://doi.org/10.1111/j.1365-313X.2004.02207.x
  12. Harmer SL, Hogenesch JB, Straume M, Chang HS et al. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113. https://doi.org/10.1126/science.290.5499.2110
  13. Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60, 357-377. https://doi.org/10.1146/annurev.arplant.043008.092054
  14. Harmon FG, Imaizumi T, and Kay SA (2005) The plant circadian clock: review of a clockwork Arabidopsis. In Endogenous Plant Rhythms. Edited by Hall A., McWatters H.G Oxford Blackwell. 21, 1-23.
  15. Hayama R, Yokoi S, Tamaki S, Yano M, and Shimamoto K (2003) Adaptation of photoperiodic control pathways produces shortday flowering in rice. Nature 422, 719-722. https://doi.org/10.1038/nature01549
  16. Ito S, Nakamichi N, Kiba T, Yamashino T, and Mizuno T. (2007) Rhythmic and light-inducible appearance of clock-associated pseudoresponse regulator protein PRR9 through programmed degradation in the dark in Arabidopsis thaliana. Plant Cell Physiol 48, 1644-1651. https://doi.org/10.1093/pcp/pcm122
  17. Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58, 3091-3097. https://doi.org/10.1093/jxb/erm159
  18. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M. and Shimamoto K (2010) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Gens & Dev 16, 2006-2020.
  19. Karp NA and Lilley KS (2007) Identification of clock genes using difference gel electrophoresis. Methods Mol Biol 362, 265-287. https://doi.org/10.1007/978-1-59745-257-1_18
  20. Kiba T, Henriques R, Sakakibara H, and Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR 5 by an SCFZTL complex regulates clock function and photomotphogenesis in Arabidopsis thaliana. Plant Cell 19, 2516-2530. https://doi.org/10.1105/tpc.107.053033
  21. Kim WY, Fujiwara S, Suh SS, Kim J et al. (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360. https://doi.org/10.1038/nature06132
  22. Kobayashi Y and Weigel D (2010) Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes & Dev 21, 2371-2384.
  23. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, and Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol 43, 1096-1105. https://doi.org/10.1093/pcp/pcf156
  24. Matsuo T, Onai L, Okamoto K, Minagawa J, and Ishiura M. (2006) Real-time monitoring of chloroplast gene expression by luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Moll Cell Biol 26, 863-881. https://doi.org/10.1128/MCB.26.3.863-870.2006
  25. McClung CR (2006) Plant circadian rhythms. Plant Cell 18, 792-803. https://doi.org/10.1105/tpc.106.040980
  26. Mishra A, Cheng CH, Lee WC, and Tsai LL (2009) Proteomic changes in the hypothalamus and retroperitoneal fat from male F334 rats subjected to repeated light-dark shifts. Proteomics 9, 4012-4028.
  27. Mittag M and Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384, 689-695. https://doi.org/10.1515/BC.2003.077
  28. Mockler TC, Michael TP, Priest HD, Shen R et al. (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72, 353-363.
  29. Moller M, Sparre T, Bache N, Roepstorff P, and Vorum H (2007) Proteomic analysis of day-night variation in protein levels in the rat pineal gland. Proteomics 7, 2009-2018. https://doi.org/10.1002/pmic.200600963
  30. Murakami M, Tago Y, Yamashino T, and Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48, 110-121.
  31. Nakajima M, Imai K, Ito H, Nishiwaki T et al. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC Phosphorylation in vitro. Science 308, 414-415. https://doi.org/10.1126/science.1108451
  32. Onouchi H, Igeno MI, Perilleux C, Graves K, and Coupland G (2000) Mutagenesis of plants overexpressing of CONS TANS demonstrates novel interactions among Arabidopsis floweringtime genes. Plant Cell 12, 885-900 https://doi.org/10.1105/tpc.12.6.885
  33. Portoles S and Mas P (2007) Altered oscillator fuction affects clock resonance and is responsible for the reduced day-length sesnsitivity of CKB4 overexpressing plants. Plant J 51, 966-977. https://doi.org/10.1111/j.1365-313X.2007.03186.x
  34. Putteril J, Robson F, Lee K, Simon R, and Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. https://doi.org/10.1016/0092-8674(95)90288-0
  35. Rensing L and Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19, 807-864. https://doi.org/10.1081/CBI-120014569
  36. Salome PA and McClung CR (2004) The AArabidopsis thaliana clock. J Biol Rhythms 19, 425-435. https://doi.org/10.1177/0748730404268112
  37. Schaffer R, Landgraf J, Accerbi M, Simon V et al. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113-123. https://doi.org/10.1105/tpc.13.1.113
  38. Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121, 9-19. https://doi.org/10.1104/pp.121.1.9
  39. Tsuji T, Hirota T, Takemori T, Komori M et al. (2007) Circadian proteomics of mouse retina. Proteomics 7, 3500-3508. https://doi.org/10.1002/pmic.200700272
  40. Wagner V, Fiedler M, Markert C, Hippler M, and Mittag M (2004) Functional proteomics of circadian expressed proteins from Chlamydomonas reihardtii. FEBS Lett 559, 129-135 https://doi.org/10.1016/S0014-5793(04)00051-1
  41. Wagner V, Gessner G, and Mittag M (2005) Functional proteomics: a promising approach to find novel components of the circadian system. Chronobiol Int 22, 403-415. https://doi.org/10.1081/CBI-200062348