References
- Breton G and Kay SA (2006) Circadian rhythms lit up in Chlamydomonas. Genome Biol 7, 215. https://doi.org/10.1186/gb-2006-7-4-215
- Bruce VG (1970) The biological clock in Chlamydomonas reinhardtii. J Protozool 17, 328-334. https://doi.org/10.1111/j.1550-7408.1970.tb02380.x
- Chen M, Chory J, and Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Gent 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
- Daniel X, Sugano S, and Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101, 3292.3297. https://doi.org/10.1073/pnas.0400163101
- Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, and Yoshimura A (2004) Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Fdl. Genes & Dev 18, 926-936. https://doi.org/10.1101/gad.1189604
- Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW et al. (2006) FLOWERING LOCUS C mediated natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639-650. https://doi.org/10.1105/tpc.105.038315
- Farre EM and Kay SA (2007) PRR7 protein levels are regulated by light and the circadian clocks in Arabidopsis. Plant J 52, 548-60. https://doi.org/10.1111/j.1365-313X.2007.03258.x
- Fujiwara S, Wang L, Han L, Suh SS et al. (2008) Posttranslational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudoresponse regulator proteins. J Biol Chem 283, 23073-23083. https://doi.org/10.1074/jbc.M803471200
- Gallego M and Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8, 139-148. https://doi.org/10.1038/nrm2106
- Gardner MJ, Hubbard KE, Hotta CT, Dodd AN, and Webb AAR (2006) How plants tell the time. Biochem J 397, 15-24. https://doi.org/10.1042/BJ20060484
- Han L, Mason M, Risseeuw EP, Crosby WL, and Somers DE (2004) Formation of an SCF (ZTL) complex is required for proper regulation of circadian timing. Plant J 40, 291-301. https://doi.org/10.1111/j.1365-313X.2004.02207.x
- Harmer SL, Hogenesch JB, Straume M, Chang HS et al. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113. https://doi.org/10.1126/science.290.5499.2110
- Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60, 357-377. https://doi.org/10.1146/annurev.arplant.043008.092054
- Harmon FG, Imaizumi T, and Kay SA (2005) The plant circadian clock: review of a clockwork Arabidopsis. In Endogenous Plant Rhythms. Edited by Hall A., McWatters H.G Oxford Blackwell. 21, 1-23.
- Hayama R, Yokoi S, Tamaki S, Yano M, and Shimamoto K (2003) Adaptation of photoperiodic control pathways produces shortday flowering in rice. Nature 422, 719-722. https://doi.org/10.1038/nature01549
- Ito S, Nakamichi N, Kiba T, Yamashino T, and Mizuno T. (2007) Rhythmic and light-inducible appearance of clock-associated pseudoresponse regulator protein PRR9 through programmed degradation in the dark in Arabidopsis thaliana. Plant Cell Physiol 48, 1644-1651. https://doi.org/10.1093/pcp/pcm122
- Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58, 3091-3097. https://doi.org/10.1093/jxb/erm159
- Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M. and Shimamoto K (2010) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Gens & Dev 16, 2006-2020.
- Karp NA and Lilley KS (2007) Identification of clock genes using difference gel electrophoresis. Methods Mol Biol 362, 265-287. https://doi.org/10.1007/978-1-59745-257-1_18
- Kiba T, Henriques R, Sakakibara H, and Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR 5 by an SCFZTL complex regulates clock function and photomotphogenesis in Arabidopsis thaliana. Plant Cell 19, 2516-2530. https://doi.org/10.1105/tpc.107.053033
- Kim WY, Fujiwara S, Suh SS, Kim J et al. (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360. https://doi.org/10.1038/nature06132
- Kobayashi Y and Weigel D (2010) Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes & Dev 21, 2371-2384.
- Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, and Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol 43, 1096-1105. https://doi.org/10.1093/pcp/pcf156
- Matsuo T, Onai L, Okamoto K, Minagawa J, and Ishiura M. (2006) Real-time monitoring of chloroplast gene expression by luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Moll Cell Biol 26, 863-881. https://doi.org/10.1128/MCB.26.3.863-870.2006
- McClung CR (2006) Plant circadian rhythms. Plant Cell 18, 792-803. https://doi.org/10.1105/tpc.106.040980
- Mishra A, Cheng CH, Lee WC, and Tsai LL (2009) Proteomic changes in the hypothalamus and retroperitoneal fat from male F334 rats subjected to repeated light-dark shifts. Proteomics 9, 4012-4028.
- Mittag M and Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384, 689-695. https://doi.org/10.1515/BC.2003.077
- Mockler TC, Michael TP, Priest HD, Shen R et al. (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72, 353-363.
- Moller M, Sparre T, Bache N, Roepstorff P, and Vorum H (2007) Proteomic analysis of day-night variation in protein levels in the rat pineal gland. Proteomics 7, 2009-2018. https://doi.org/10.1002/pmic.200600963
- Murakami M, Tago Y, Yamashino T, and Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48, 110-121.
- Nakajima M, Imai K, Ito H, Nishiwaki T et al. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC Phosphorylation in vitro. Science 308, 414-415. https://doi.org/10.1126/science.1108451
- Onouchi H, Igeno MI, Perilleux C, Graves K, and Coupland G (2000) Mutagenesis of plants overexpressing of CONS TANS demonstrates novel interactions among Arabidopsis floweringtime genes. Plant Cell 12, 885-900 https://doi.org/10.1105/tpc.12.6.885
- Portoles S and Mas P (2007) Altered oscillator fuction affects clock resonance and is responsible for the reduced day-length sesnsitivity of CKB4 overexpressing plants. Plant J 51, 966-977. https://doi.org/10.1111/j.1365-313X.2007.03186.x
- Putteril J, Robson F, Lee K, Simon R, and Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. https://doi.org/10.1016/0092-8674(95)90288-0
- Rensing L and Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19, 807-864. https://doi.org/10.1081/CBI-120014569
- Salome PA and McClung CR (2004) The AArabidopsis thaliana clock. J Biol Rhythms 19, 425-435. https://doi.org/10.1177/0748730404268112
- Schaffer R, Landgraf J, Accerbi M, Simon V et al. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113-123. https://doi.org/10.1105/tpc.13.1.113
- Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121, 9-19. https://doi.org/10.1104/pp.121.1.9
- Tsuji T, Hirota T, Takemori T, Komori M et al. (2007) Circadian proteomics of mouse retina. Proteomics 7, 3500-3508. https://doi.org/10.1002/pmic.200700272
- Wagner V, Fiedler M, Markert C, Hippler M, and Mittag M (2004) Functional proteomics of circadian expressed proteins from Chlamydomonas reihardtii. FEBS Lett 559, 129-135 https://doi.org/10.1016/S0014-5793(04)00051-1
- Wagner V, Gessner G, and Mittag M (2005) Functional proteomics: a promising approach to find novel components of the circadian system. Chronobiol Int 22, 403-415. https://doi.org/10.1081/CBI-200062348