• Title/Summary/Keyword: proteomic

Search Result 504, Processing Time 0.039 seconds

Difference in Protein Markers According to the Survival of Sepsis Patients using Protein Chips (패혈증 생존 및 사망 환자 혈장에서 단백질 칩을 이용한 분석의 차이)

  • Park, Myoung Ok;Lee, Heui Young;Son, Hee Jung;Sung, Ji Hyun;Lee, Seung Joon;Lee, Sung Joon;Ha, Kwon Soo;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • Background; Several clinical scoring systems are currently being used to predict the outcome of sepsis, but they all have certain limitations. Therefore, we sought to identify the proteomic biomarkers, with wsing proteomic tools, that differed according to the outcome of sepsis patients. Methods; Upon admission to the ICU, blood samples were obtained from the 16 patients with sepsis who were enrolled in this study. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI -TOF MS) was used to identify the markers that could predict the outcome of sepsis. Results; We found six peaks, by using cation and anion chips, that statistically differed between those patients who died and those who survived. Conclusion; The biomarkers we found by using proteomic tools may help predict the prognosis and also plan the treatment of sepsis.

DNA and Proteomic Expression of Cervi parvum cornu Herbal-acupuncture Solution (CPC-HAS) in HepG2 carcinomar cells (녹용약침액(鹿茸藥鍼液)의 간암세포주(肝癌細胞柱)에 대한 DNA 및 단백질 발현(發顯))

  • Ryu, Sung-Hyun;Lee, Kyung-Min;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul
    • Journal of Pharmacopuncture
    • /
    • v.9 no.2
    • /
    • pp.5-16
    • /
    • 2006
  • Objective : It has long been known about the osteogenic effect of CPC-HAS on bone tissues. However, it has not been determined the effect of CPC-HAS on cancer cells. The purpose of this study is to screen the CPC-HAS mediated differentially expressed genes in cancer cells such as HepG2 hepatoma cells. Oligonucleotide microarray and proteomics approaches were employed to screen the differential expression genes. Methods : CPC-HAS was prepared by boiling and stored at $-70^{\circ}C$ until use. Cells were treated with various concentrations of CPC-HAS (0.1, 0.5, 1.5, 10, 20mg/ml) for 24 h. Cell toxicity was tested by MTT assay. To screen the differentially expressed genes in cancer cells, cells were treated with 1.5mg/ml of CPC-HAS. For oligonucleotide microarray assay, total RNA was used for gene expression analysis using oligonucleotide Genechip(Human genome Ul33 Plus 2.0., Affimatrix Co.). For proteomic analysis, total protein was analyzed by 2D gel electrophoresis and Q-TOF mass spectrometer. Results : It has no cytotoxic effects on both HepG2 cell in all concentrations(0.l, 0.5, 1.5, 10, 20mg/ml). In oligonucleotide microarray assay, the number of more than twofold differentially regulated known genes was 23 with 5 up-regulated and 18 down-regulated genes in HepG2 cells. In proteomic analysis, three spots were identified by 2D-gel electrophoresis and Q-TOF analysis. Two down-regulated proteins were aldehyde dehydrogenase 1 and enolase 1, and up-regulated protein was fatty acid binding protein 1 by 1.5mg/ml of CPC-HAS. Discussion : This study showed the screening of CPC-HAS mediated differentially regulated genes using combined approaches of oligonucleotide microarray and proteomic analysis. The screened genes will be used for the better understanding of the therapeutic effects of CPC-HAS on cancer fields.