• Title/Summary/Keyword: proteolytic system

Search Result 81, Processing Time 0.021 seconds

Protesome Inhibition Activity of Psoraleae Semen and Processed Psoraleae Semen (보골지 및 염초보골지의 proteasome 저해 작용)

  • Shim, Sang-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.1
    • /
    • pp.56-59
    • /
    • 2008
  • Ubiquitin-proteasome proteolytic system plays an important role in selective protein degradation and regulates cellular events including apoptosis. Cancer cells have been shown to be more sensitive to the proapoptotic effects of proteasome inhibition than normal cells. Thus, proteasome inhibitor can be potential anticancer agent. Since the MeOH extracts of psoraleae semen and processed psoraleae semen showed potent proteasome inhibition activity, the fractions of the extracts were evaluated on the activity to screen the proteasome inhibitors. The $CHCl_3$ fr. of the processed psoraleae semen showed the most potent activity, of which chemical investigation led to two coumarins, psoralen and isopsoralen. Their structures were determined by spectroscopic methods such as $^1H-NMR$ and EIMS spectra.

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

Substrate specificity of bacterial endoribonuclease toxins

  • Han, Yoontak;Lee, Eun-Jin
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.611-621
    • /
    • 2020
  • Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.

High sensitivity of embryonic stem cells to proteasome inhibitors correlates with low expression of heat shock protein and decrease of pluripotent cell marker expression

  • Park, Jeong-A;Kim, Young-Eun;Ha, Yang-Hwa;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.299-304
    • /
    • 2012
  • The ubiquitin-proteasome system is a major proteolytic system for nonlysosomal degradation of cellular proteins. Here, we investigated the response of mouse embryonic stem (ES) cells under proteotoxic stress. Proteasome inhibitors induced expression of heat shock protein 70 (HSP70) in a concentration- and time-dependent manner, and also induced apoptosis of ES cells. Importantly, more apoptotic cells were observed in ES cells compared with other somatic cells. To understand this phenomenon, we further investigated the expression of HSP70 and pluripotent cell markers. HSP70 expression was more significantly increased in somatic cells than in ES cells, and expression levels of pluripotent cell markers such as Oct4 and Nanog were decreased in ES cells. These results suggest that higher sensitivity of ES cells to proteotoxic stress may be related with lower capacity of HSP70 expression and decreased pluripotent cell marker expression, which is essential for the survival of ES cells.

The effect of lead on matrix metalloproteinase-9 expression in rat primary glial cells

  • Park, Min-Sik;Lee, Woo-Jong;Kim, Young-Eun;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.84-84
    • /
    • 2003
  • Lead has long been considered as a toxic environmental pollutant, which severely damages central nervous system. Lead can cause hypo- and de-myelination, and glial cells are closely related with myelination or demyelination. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are involved in the remodelling of the extracellular matrix in a variety of physiological and pathological processes. MMPs also seem to be important in the pathogenesis of inflammatory demyelinating diseases of the central and peripheral nervous system. In this study, we investigated whether lead affects MMP-9 expression in rat primary glial cells. Treatment of 0.1-5 ${\mu}$M lead dose- and time-dependently increased MMP-9 expression in rat primary glial cells. The activity of MMPs was determined using zymography. Lead activated Erk(1/2) but neither of the other endogenous MAP kinases, p38 or JNK. Inhibition of Erk(1/2) activation by PD98059, a MEK inihibitor, prevented lead-induced expression of MMP-9. The results of the present study suggest that lead intoxication may adversely affect brain function at least in part by inducing MMP-9 expression through Erk(1/2) activation in primary glial cells.

  • PDF

The role of calpain in skeletal muscle

  • Pandurangan, Muthuraman;Hwang, Inho
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.431-437
    • /
    • 2012
  • Calpains are a class of proteins that belong to the calcium-dependent, non-lysosomal cysteine proteases. There are three major types of calpains expressed in the skeletal muscle, namely, ${\mu}$-calpain, m-calpain, and calpain 3, which show proteolytic activities. Skeletal muscle fibers possess all three calpains, and they are $Ca^{2+}$-dependent proteases. The functional role of calpains was found to be associated with apoptosis and myogenesis. However, calpain 3 is likely to be involved in sarcomeric remodeling. A defect in the expression of calpain 3 leads to limb-girdle muscular dystrophy type 2A. Calpain 3 is found in skeletal muscle fibers at the N2A line of the large elastic protein, titin. A substantial proportion of calpain 3 is activated 24 h following a single bout of eccentric exercise. In vitro studies indicated that calpain 3 can be activated 2-4 fold higher than normal resting cytoplasmic [$Ca^{2+}$]. Characterization of the calpain system in the developing muscle is essential to explain which calpain isoforms are present and whether both ${\mu}$-calpain and m-calpain exist in differentiating myoblasts. Information from such studies is needed to clarify the role of the calpain system in skeletal muscle growth. It has been demonstrated that the activation of ubiquitous calpains and calpain 3 in skeletal muscle is very well regulated in the presence of huge and rapid changes in intracellular [$Ca^{2+}$].

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity (E. coli에서 발현된 human HtrA1 단백질의 정제와 HtrA1의 serine protease 활성 조건에 관한 연구)

  • Kim, Kyung-Hee;Kim, Sang-Soo;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1133-1140
    • /
    • 2006
  • Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.

A Novel Glycine-Rich Region in Sox4 is a Target for the Proteolytic Cleavage in E. coli (전사활성 인자인 Sox4의 단백질 분해효소에 의한 표적 부위에 관한 연구)

  • 허은혜;최주연;장경희;김인경;임향숙
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Sox4, a transcription factor, consists of three functional domains: an HMG-box domain as a DNA binding domain, serine rich region as a transactivation domain and glycine rich region (GRR), an unknown functional domain. Although Sox4 is known to be functionally involved in heart, B-cell and reproductive system development, its physiological function remains to be elucidated. We used pGEX expression system to develop a simple and rapid method for purifying Sox4 protein in suitable forms for biochemical studies of their functions. Unexpectedly, we observed that full-length Sox4 appears to be protease-sensitive during expression and purification in E. coli. To map the protease-sensitive site in Sox4, we generated various constructs with each of functional domains of Sox4 and purified as the GST-Sox4 fusion proteins using glutathione beads. We found that the specific cleavage site for the proteolytic enzyme, which exists in E. coli, is localized within the novel GRR of Sox4. Our study suggest that the GRR of Sox4 may a target for the cellular protease action and this cleavage in the GRR may be involved in regulating physiological function of Sox4. Additionally, our study may provide a useful method for investigating the proteolytic cleavage of the target molecule in E. coli.

Effect of the Calpain System on Volatile Flavor Compounds in the Beef Longissimus lumborum Muscle

  • Yang, Jieun;Dashdorj, Dashmaa;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.515-529
    • /
    • 2018
  • The present study was designed to investigate the effects of calpain system on the formation of volatile flavor compounds in Hanwoo beef. In the first experiment (exp.1), Longissimus lumborum (LL) muscle samples were injected with solutions containing 50 mM $CaCl_2$ or 50 mM $ZnCl_2$ and 154 mM NaCl respectively, and aged for 7 d at $4^{\circ}C$. In the second experiment (exp.2), the ground LL muscle was incubated with the aforementioned solutions containing cathepsin inhibitor. The injection with $CaCl_2$ solution greatly elevated the calpain activity and concomitantly, significantly decreased the Warner-Bratzler shear force (p<0.05). The pH, meat color and cooking loss did not differ (p>0.05) between the treatment groups. A total of 51 volatile compounds were identified using the solid phase microextraction with gas chromatography (SPME-GC). Results on volatile analyses from the both experiments showed that the injection with calcium ions led to significant increase (p<0.05) concentrations of pyrazines and sulfuric compounds. These results coincide with a higher rate of protein degradation due to the $CaCl_2$ injection as compared to the control group. Significantly (p<0.05) higher levels of lipid oxidation derived-aldehydes were found in the samples with $ZnCl_2$. The exp.1 showed that cathepsin inhibitors had no effect on the formation of volatile flavor components after 7 d of aging. These results imply that the proteolytic activity of the calpain system is associated with generation of volatile compounds of chiller-aged beef, while the role of cathepsins is likely very limited.

Degradation of Insect Humoral Immune Proteins by the Proteases Secreted from Enterococcus faecalis

  • Park, Shin-Yong;Kim, Koung-Mi;Kim, Ik-Soo;Lee, Sang-Dae;Lee, In-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Enterococcus faecalis was isolated from the body fluid of dead Galleria mellonella larvae. Upon injection of E. faecalis into the hemocoel of G. mellonella, the bacteria destroyed parts of humoral defense systems in the hemolymph. In a test for the proteolytic activity of E. faecalis CS, it was confirmed that the enzyme degraded three well-known a-helical antimicrobial peptides, cecropin A, melittin and halocidin, and abolished their activities. We also determined putative cleavage sites on the primary sequences of three peptides through purification and mass analysis of peptide fragments digested by E. faecalis CS. Furthermore it was found that apolipophorin-III, recently known as a critical recognition protein for invading microbes in the hemolymph of G. mellonella, was also degraded by E. faecalis CS. Taken together, the present work shows that the protease in secretions from E. faecalis destroyed two critical humoral immune factors in the hemolymph of G. mellonella larvae. In addition, this paper demonstrates that the relationship between the host insect and the pathogenic bacteria might provide a valuable model system to study the enterococcal virulence mechanism, which may be relevant to mammalian pathogenesis.