• 제목/요약/키워드: protein-RNA interaction

검색결과 227건 처리시간 0.029초

Isolation and Differential Expression of an Acidic PR-1 cDNA Gene from Soybean Hypocotyls Infected with Phtophthora sojae f. sp. glycines

  • Kim, Choong-Seo;Yi, Seung-Youn;Lee, Yeon-Kyung;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제16권1호
    • /
    • pp.9-18
    • /
    • 2000
  • Using differential display techniques, a new acidic pathogenesis-related (PR) protein-1 cDNA (GMPRla) gene was isolated from a cDNA library of soybean (Glycinemax L.Merr, cultivar Jangyup) hypocotyls infected by Phytophthora sojae f. sp. glycines. The 741 bp of fulllength GMPRla clone contains an open reading frame of 525 nucleotides encoding 174 amino acid residues (pI 4.23) with a putative signal peptide of 27 amino acids in the N-terminus. Predicted molecular weight of the protein is 18,767 Da. The deduced amino acid sequence of GMPRla has a high level of identity with PR-1 proteins from Brassica napus, Nicotiana tabacum, and Sambucus nigra. The GMPRla mRNA was more strongly expressed in the incompatible than the compatible interaction. The transcript accumulation was induced in the soybbean hypocotyls by treatment with ethephon or DL-$\beta$-amino-n-butyric acid, but not by wounding. In situ hybridization data showed that GMPRIa mRNAs were usually localized in the vascular bundle of hypocotyl tissues, especially phloem tissue. Differences between compatible and incompatible interactions in the timing of GMPRla mRNA accumulation were remarkable, but the spatial distribution of GMPRla mRNA was similar in both interactions. However, more GMPRla mRNA was accumulated in soybean hypocotyls at 6 and 24 h after inoculation.

  • PDF

ErmSF에서 두 도메인 사이에 존재하는 잘 보존된 237번 아르지닌 잔기의 위치 지정 치환 변이의 효소 활성 검색을 통한 역할 규명 (Mutational Analysis Elucidates the Role of Conserved 237 Arginine in 23S rRNA Methylation, Which is in the Concave Cleft Region of ErmSF)

  • 진형종
    • 미생물학회지
    • /
    • 제49권2호
    • /
    • pp.105-111
    • /
    • 2013
  • Erm 단백질은 23S rRNA의 특정 아데닌 잔기 $N_6$ 위치에 methylation을 일으켜 임상적으로 중요하게 사용되는 macrolide-lincosamide-streptogramin B계 항생제에 내성을 유발시킨다. 최근 ErmC'에서 N-말단 catalytic domain과 C-말단 substrate binding domain를 연결하는 오목한 홈 형성부위에 존재하는 잘 보존된 아미노산 잔기가 기질과 상호작용하는 것으로 제안되었다. 우리는 ErmSF에서 두 domain의 연결 부위의 오목한 홈에 위치하여 기질과의 상호작용이 예상되며 또한 Erm 단백질들 사이에서 매우 높게 보존되어있는 237번 아르지닌 잔기를 치환하여 그 기능을 in vivo, in vitro상에서 검색하여 분석하였다. R237A 변이 단백질을 발현하는 세균은 야생형 단백질을 발현하는 세균과 비교하여 in vivo 상에서는 차이를 나타내지 않았으나 순수분리 한 후 in vitro에서의 효소 활성은 야생형에 비하여 51%만을 나타내어 그 잔기가 기질 부착 기능을 수행하고 있다고 제안할 수 있었다.

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Choi, Joon-Seok;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.18-24
    • /
    • 2020
  • Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.

Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats

  • Chen, Haolin;Miao Xiaomeng;Xu, Jinge;Pu, Ling;Li, Liang;Han, Yong;Mao, Fengxian;Ma, Youji
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.544-555
    • /
    • 2022
  • Objective: Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods: We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results: We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion: These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.

Direct Regulation of TLR5 Expression by Caveolin-1

  • Lim, Jae Sung;Nguyen, Kim Cuc Thi;Han, Jung Min;Jang, Ik-Soon;Fabian, Claire;Cho, Kyung A
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1111-1117
    • /
    • 2015
  • Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life.

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

5'-Untranslated Region에 존재하는 Iron Responsive Element에 의한 Ferritin 합성조절 (Regulation of Ferritin Synthesis by Iron-responsive Element in 5'-Untranslated Region)

  • 정인식;이중림;김해영
    • Applied Biological Chemistry
    • /
    • 제41권3호
    • /
    • pp.224-227
    • /
    • 1998
  • 철의 대사과정에 관여하는 ferritin 단백질의 발현은 ferritin transcript의 5'-untranslated region에 위치한 iron-responsive element (IRE)와 철 농도 조절 단백질의 결합에 의해 조절된다. 이러한 ferritin의 생성에 관여하는 구조적인 요소를 밝히기 위해, RNA 이차구조인 IRE의 bulge 부분을 다른 염기로 변환시켜 철 농도 조절단백질에 의한 RNA 결합력과 ferritin 단백질의 생성의 저해정도를 비교 측정하였다. 측정된 결과로부터 IRE의 bulge 부분의 시토신 염기배열만이 RNA 이차구조의 형성에 중요한 작용을 하여 ferritin 합성을 조절할 수 있는 것을 보였다.

  • PDF

Cadmium increases ferroportin-1 gene expression in J774 macrophage cells via the production of reactive oxygen species

  • Park, Bo-Yeon;Chung, Ja-Yong
    • Nutrition Research and Practice
    • /
    • 제3권3호
    • /
    • pp.192-199
    • /
    • 2009
  • Cadmium intoxication has been associated with the dysregulation of iron homeostasis. In the present study, we investigated the effect of cadmium on the expression of ferroportin 1 (FPN1), an important iron transporter protein that is involved in iron release from macrophages. When we incubated cadmium with J774 mouse macrophage cells, FPN1 mRNA levels were significantly increased in a dose- and time-dependent manner. Furthermore, the cadmium-induced FPN1 mRNA expression was associated with increased levels of FPN1 protein. On the other hand, cadmium-mediated FPN1 mRNA induction in J774 cells was completely blocked when cells were co-treated with a transcription inhibitor, acitomycin D. Also, cadmium directly stimulated the activity of the FPN1-promoter driven luciferase reporter, suggesting that the cadmium up-regulates FPN1 gene expression in a transcription-dependent manner. Finally, cadmium exposure to J774 macrophages increased intracellular reactive oxygen species (ROS) levels by ${\sim}2$-fold, compared to untreated controls. When J774 cells were co-treated with antioxidant N-acetylcystein, the cadmium-induced FPN1 mRNA induction was significantly attenuated. In summary, the results of this study clearly demonstrated that cadmium increased FPN1 expression in macrophages through a mechanism that involves ROS production, and suggests another important interaction between iron and cadmium metabolism.

29-kDa FN-f inhibited autophagy through modulating localization of HMGB1 in human articular chondrocytes

  • Hwang, Hyun Sook;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.508-513
    • /
    • 2018
  • Fibronectin fragments found in the synovial fluid of patients with osteoarthritis (OA) induce the catabolic responses in cartilage. Nuclear high-mobility group protein Box 1 (HMGB1), a damage-associated molecular pattern, is responsible for the regulation of signaling pathways related to cell death and survival in response to various stimuli. In this study, we investigated whether changes induced by 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) in HMGB1 expression influences the pathogenesis of OA via an HMGB1-modulated autophagy signaling pathway. Human articular chondrocytes were enzymatically isolated from articular cartilage. The level of mRNA was measured by quantitative real-time PCR. The expression of proteins was examined by western blot analysis, immnunofluorescence assay, and enzyme-linked immunosorbent assay. Interaction of proteins was evaluated by immunoprecipitation. The HMGB1 level was significantly lower in human OA cartilage than in normal cartilage. Although 29-kDa FN-f significantly reduced the HMGB1 expression at the mRNA and protein levels 6 h after treatment, the cytoplasmic level of HMGB1 was increased in chondrocytes treated with 29-kDa FN-f, which significantly inhibited the interaction of HMGB1 with Beclin-1, increased the interaction of Bcl-2 with Beclin-1, and decreased the levels of Beclin-1 and phosphorylated Bcl-2. In addition, the level of microtubule-associated protein 1 light chain 3-II, an autophagy marker, was down-regulated in chondrocytes treated with 29-kDa FN-f, whereas the effect was antagonized by mTOR knockdown. Furthermore, prolonged treatment with 29-kDa FN-f significantly increased the release of HMGB1 into the culture medium. These results demonstrated that 29-kDa FN-f inhibits chondrocyte autophagy by modulating the HMGB1 signaling pathway.

A protein interactions map of multiple organ systems associated with COVID-19 disease

  • Bharne, Dhammapal
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.14.1-14.6
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is an on-going pandemic disease infecting millions of people across the globe. Recent reports of reduction in antibody levels and the re-emergence of the disease in recovered patients necessitated the understanding of the pandemic at the core level. The cases of multiple organ failures emphasized the consideration of different organ systems while managing the disease. The present study employed RNA sequencing data to determine the disease associated differentially regulated genes and their related protein interactions in several organ systems. It signified the importance of early diagnosis and treatment of the disease. A map of protein interactions of multiple organ systems was built and uncovered CAV1 and CTNNB1 as the top degree nodes. A core interactions sub-network was analyzed to identify different modules of functional significance. AR, CTNNB1, CAV1, and PIK3R1 proteins were unfolded as bridging nodes interconnecting different modules for the information flow across several pathways. The present study also highlighted some of the druggable targets to analyze in drug re-purposing strategies against the COVID-19 pandemic. Therefore, the protein interactions map and the modular interactions of the differentially regulated genes in the multiple organ systems would incline the scientists and researchers to investigate in novel therapeutics for the COVID-19 pandemic expeditiously.