• 제목/요약/키워드: protein vaccine

검색결과 421건 처리시간 0.021초

Overexpression of SRG3/SW13 Protein Disrupts the Cell Cycle Progression in Mature T Cells and Yeast

  • Jeon, Sung-Ho;Choi, Young-Il;Seong, Rho-Hyun
    • Animal cells and systems
    • /
    • 제6권4호
    • /
    • pp.335-339
    • /
    • 2002
  • Mouse T cells overexpressing the SRG3 protein displayed morphological changes; the cells were enlarged and their shapes were irregular compared to the normal parental cells. In addition, growth rate of the cells was dramatically reduced and their DNA contents were increased. The increased DNA contents were due to an increase in number of chromosomes in these cells. We have observed similar results in S. cerevisiae cells overex-pressing the yeast SWI3 protein. Yeast cells overexpressing SWI3 protein These results suggest that the SRG3/SWI3 protein plays an important role in cell growth and cell cycle progression.

Large-Scale Production of Rotavirus VLP as Vaccine Candidate Using Baculovirus Expression Vector System (BEVS)

  • Park, Jin-Yong;Kim, Hun;Hwang, Hi-Ku;Lee, Su-Jeen;Kim, Hyun-Sung;Hur, Byung-Ki;Ryu, Yeon-Woo;An, Chang-Nam;Kim, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.35-40
    • /
    • 2004
  • Rotavirus virus-like particle (VLP) composed of VP2, VP6, and VP7 was expressed in the Baculovirus Expression Vector System (BEVS). Sf9 cell, a host of the baculovirus, was cultured from a 0.5-1 spinner flask to the 50-1 bioreactor system. Sf9 cell was maintained at cell density between 3.0E+05 and 3.0E+06 cells/ml and grew up to 1.12E+07 cells/ml in the bioreactor. Growth kinetics was compared under different culture systems and showed similar growth kinetics with 20.1-25.2 h of doubling time. Early exponentially growing cell culture was infected with three recombinant baculoviruses expressing VP2, VP6, and VP7 protein at 1.0, 2.0, and 0.2 moi, respectively. The expression of rotavirus proteins was confirmed by Western blot analysis and its three-layered virus-like structure was observed under an electron microscope. Rotavirus VLP was semipurified and immunized in ICR mice intramuscularly. Rotavirus-specific serum antibody was detected from 2 weeks after the immunization and lasted at least 21 weeks of the post-immunization, indicating its possible use as a vaccine candidate.

Insights into structural vaccinology harnessed for universal coronavirus vaccine development

  • Chin Peng Lim;Chiuan Herng Leow;Hui Ting Lim;Boon Hui Kok;Candy Chuah;Jonas Ivan Nobre Oliveira;Malcolm Jones;Chiuan Yee Leow
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권3호
    • /
    • pp.202-217
    • /
    • 2024
  • Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.

Comparison of media for a human peripheral blood mononuclear cell-based in vitro vaccine evaluation system

  • Shuran Gong;Putri Fajar;Jacqueline De Vries-Idema;Anke Huckriede
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권4호
    • /
    • pp.328-336
    • /
    • 2023
  • Purpose: Human peripheral blood mononuclear cell (PBMC)-based in vitro systems can be of great value in the development and assessment of vaccines but require the right medium for optimal performance of the different cell types present. Here, we compare three commonly used media for their capacity to support innate and adaptive immune responses evoked in PBMCs by Toll-like receptor (TLR) ligands and whole inactivated virus (WIV) influenza vaccine. Materials and Methods: Human PBMCs were cultured for different periods of time in Roswell Park Memorial Institute (RPMI), Dulbecco's minimal essential medium (DMEM), or Iscove's modified DMEM (IMDM) supplemented with 10% fetal calf serum. The viability of the cells was monitored and their responses to TLR ligands and WIV were assessed. Results: With increasing days of incubation, the viability of PBMCs cultured in RPMI or IMDM was slightly higher than that of cells cultured in DMEM. Upon exposure of the PBMCs to TLR ligands and WIV, RPMI was superior to the other two media in terms of supporting the expression of genes related to innate immunity, such as the TLR adaptor protein gene MyD88 (myeloid differentiation factor 88), the interferon (IFN)-stimulated genes MxA (myxovirus resistance protein 1) and ISG56 (interferon-stimulated gene 56), and the leukocyte recruitment chemokine gene MCP1 (monocyte chemoattractant protein-1). RPMI also performed best with regard to the activation of antigen-presenting cells. As for adaptive immunity, when stimulated with WIV, PBMCs cultured in RPMI or IMDM contained higher numbers of IFNγ-producing T cells and secreted more immunoglobulin G than PBMCs cultured in DMEM. Conclusion: Taken together, among the different media assessed, RPMI was identified as the optimal medium for a human PBMC-based in vitro vaccine evaluation system.

Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease

  • Luo, Shaoxiang;Yan, Liming;Zhang, Xiaohua;Yuan, Li;Fang, Qin;Zhang, Yong-An;Dai, Heping
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2135-2145
    • /
    • 2015
  • VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine.

Immune Modulation of Recombinant OmpA against Brucella abortus 544 Infection in Mice

  • Simborio, Hannah Leah Tadeja;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Arayan, Lauren Togonon;Min, Wongi;Lee, Hu Jang;Lee, Jin Ju;Chang, Hong Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.603-609
    • /
    • 2016
  • Brucellosis affects a wide range of host species, including humans and many livestock animals. Chronic infections of the disease make antibiotic treatment costly, and the current vaccine used in livestock has not been approved for human use. This study investigated the possible use of the Brucella abortus outer membrane protein A (OmpA) as a candidate subunit vaccine in an infected mouse model. The ompA gene was cloned and overexpressed, and the recombinant OmpA (rOmpA) protein fused to maltose binding protein (MBP) was purified in Escherichia coli. Immunogenicity was verified through western blotting, and mice were immunized and challenged to evaluate its protective effect. Mice treated with rOmpA exhibited induced humoral and host cell-mediated responses, with a significant increase in immunoglobulin G (IgG1 and IgG2a) and cytokine levels, especially TNF-α and IL-12, compared with the control groups treated with either MBP or PBS. In conclusion, rOmpA should be highly considered as a future subunit vaccine for brucellosis, and further studies regarding rOmpA and its protective ability are suggested.

Theileria sergenti merozoite부터 합성한 polypeptide vaccine의 예방효과 연구 (Immunoprophylactic effect of synthetic polypeptide vaccine derived from Theileria sergenti merozoite)

  • 백병걸;정재명;김병수
    • 대한수의학회지
    • /
    • 제36권2호
    • /
    • pp.453-461
    • /
    • 1996
  • Eighteen holstein-calves(4~5 months old) in a divided groups including the matched control were immunized with $100{\mu}g/dose$ of 34kDa, 45kDa polypeptide and T sergenti merozoite vaccine(protein content $100{\mu}g/dose$) respectively, previously mixed with aluminium hydroxide to elicit antibodies. All groups of calves were boosted with same dose and intervals. The animals were challenged by tick infestations in the endemic pasture of theileriosis from March to September 1994. The animals were monitored for the erythrocyte count, parasitemia, hematocrit and the specific antibody reactions elicited by immunization. The immunological responses demonstrated that vaccination with 34kDa polypeptide and T sergenti merozoite derived vaccine inhibited to produce the 75kDa band immunological responds even in the vaccinated calves after being challenged by tick infestations in the pasture. However, the specific antibody reactions were detected at the 32kDa band in the nonimmunized calves and T sergenti merozoite derived vaccine by the western blot. The 34kDa polypeptide vaccine and T sergenti merozoite derived vaccine were evaluated to be able to protect inducing anemia and to decrease parasitemias level. These vaccines have the efficacy of inhibition to produce a certain antigen corresponding 75kDa band antigen of parasite in the calves as challenged with tick infestations.

  • PDF

폐구균 단백 결합 백신의 효능 및 효과 (Efficacy and effectiveness of pneumococcal conjugate vaccine in children)

  • 이환종
    • Clinical and Experimental Pediatrics
    • /
    • 제49권3호
    • /
    • pp.235-241
    • /
    • 2006
  • Streptococus pneumoniae is an important cause of invasive infections as well as non-invasive infections such as acute otitis media and sinusitis both in children and adults. Resistance of S. pneumoniae to multiple antimicrobials is increasing and poses therapeutic challenges, and prevention became more important. 23-valent polysaccharide vaccine has been used for the last several decades, but is not effective in children <2 years of age, the highest risk group of invasive diseases. Recently, a 7-valent pneumococcal protein conjugate vaccine(PCV) which is effective in infants and young children has been developed. The efficacy of PCVs against invasive pneumococcal disease and pneumonia is well established and is documented in several well-conducted studies. However, the effect of PCVs on otitis media is less obvious and more complex. PCVs clearly reduce diseases caused by vaccine-type(VT) pneumococci, but replacement of VT serotypes by non-VT serotypes in nasopharyngeal carriage of S. pneumoniae is responsible for the increase in acute otitis media caused by non-VT serotypes. Three years after introduction of PCV in the US, some increase of invasive infections with serotype 19A possibly due to serotype switching within certain vaccine type strains has been noted. Since most antibiotic-resistance in S. pneumoniae is confined to VT serotypes, vaccine use also reduces antibiotic resistance. With development of PCV, there was a great advance in the prevention of pneumococcal diseases, but replacement with potential virulent organisms and development of antibiotic resistance in non-VT pneumococci is a possibility that needs careful monitoring.

Staphylococcus aureus의 재조합 fibronectin-binding protein의 생산 (Production of the recombinant fibronectin-binding protein of Staphylococcus aureus)

  • 김두;정자룡;박희명;한홍율
    • 대한수의학회지
    • /
    • 제37권4호
    • /
    • pp.875-882
    • /
    • 1997
  • To produce the recombinant fibronectin-binding protein(FnBP) for development of subunit vaccine against Staphylococcus aureus. The fnbp gene was amplified from the chromosomal DNA of S aureus KNU 196 strain using the polymerase chain reaction, and cloned into pGEX-4T-2. Then, the recombinant FnBP fused with glutathione-S-transferase was produced in E coli, purified by affinity chromatography, and identified its antigenicity and immunogenicity by Western blot. The recombinant FnBP produced in this study is considered to have the same property of native FnBP purified from S aureus, and is expected to be useful as a candidate for S aureus subunit vaccine.

  • PDF

Virus-Like Particles Expressing Toxoplasma gondii Rhoptry Protein 18 Induces Better Protection Than Rhoptry Protein 4 against T. gondii Infection

  • Kang, Hae-Ji;Lee, Su-Hwa;Chu, Ki-Back;Lee, Dong-Hun;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • 제56권5호
    • /
    • pp.429-435
    • /
    • 2018
  • Toxoplasma gondii is a ubiquitous protozoan parasite responsible for causing toxoplasmosis. Preventive measures for toxoplasmosis are currently lacking and as such, development of novel vaccines are of urgent need. In this study, we generated 2 virus-like particles (VLPs) vaccines expressing T. gondii rhoptry protein 4 (ROP4) or rhoptry protein 18 (ROP18) using influenza matrix protein (M1) as a core protein. Mice were intranasally immunized with VLPs vaccines and after the last immunization, mice were challenged with ME49 cysts. Protective efficacy was assessed and compared by determining serum antibody responses, body weight changes and the reduction of cyst counts in the brain. ROP18 VLPs-immunized mice induced greater levels of IgG and IgA antibody responses than those immunized with ROP4 VLPs. ROP18 VLPs immunization significantly reduced body weight loss and the number of brain cysts in mice compared to ROP4 VLPs post-challenge. These results indicate that T. gondii ROP18 VLPs elicited better protective efficacy than ROP4 VLPs, providing important insight into vaccine design strategy.