• Title/Summary/Keyword: protein transduction efficiency

Search Result 20, Processing Time 0.027 seconds

Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins

  • Lee, Sun-Hwa;Jeong, Hoon-Jae;Kim, Dae-Won;Sohn, Eun-Jeong;Kim, Mi-Jin;Kim, Duk-Soo;Kang, Tae-Cheon;Lim, Soon-Sung;Kang, Il-Jun;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.561-566
    • /
    • 2010
  • Though protein transduction domains (PTDs) are well known for the delivery of exogenous therapeutic proteins into living cells, the overall low efficiency of transduction is a serious obstacle. We investigated the effect of bog blueberry anthocyanins (BBA) on protein transduction efficiency and found that BBA enhanced the transduction efficiencies of Tat-SOD fusion protein into HeLa cells and mice skin. The enzymatic activities in the cells and skin tissue in the presence of BBA were markedly increased compared to controls. Further, BBA did not demonstrate any cell toxicity at various concentrations. Although the mechanism is not fully understood, we suggest that BBA might alter the conformation of the membrane, which would indicate that BBA can be used as a protein transduction enhancer for the efficient delivery of therapeutic proteins for a variety of disorders.

Effect of cell growth inhibition by eukaryotic initiation factor 2 derived peptides (진핵생물 개시인자 유래 펩타이드의 세포 성장 억제 효능)

  • Yu, HanJin;Lim, Kwang Suk
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In the process of protein transcription and translation, various protein complexes bind to DNA, and all processes are precisely controlled. Among the proteins constituting this complex, a peptide derived from eukaryotic initiation factor (eIF) 2 was synthesized. In addition, in order to increase the efficiency of transduction of this peptide into cells, peptides with polyarginine, one of the protein transduction domains (PTD), were synthesized. Cell growth inhibition was confirmed in HER2 positive breast cancer (SK-Br-3) and HER2 negative breast cancer (MDA-MB-231), and cardiomyocytes (H9c2). The peptide with polyarginine had high transduction efficiency in all cells, and had excellent cancer cell growth inhibitory effects. The peptide used in this study might be useful peptide therapeutics for the treatment of cancer through future research.

Nonviral Gene Delivery by a Novel Protein Transduction Domain

  • An, Songhie;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2589-2593
    • /
    • 2013
  • Gene therapy using nonviral gene delivery carriers has focused on the development and modification of synthetic carriers such as liposomes and polymers. Most polymers that are commercially used are taking advantage of their polycationic character which allows not only strong ligand-DNA affinity but also competent cell penetration. Despite the relatively high transfection efficiencies, high cytotoxicity is continuously pointed out as one of the major shortcomings of polycationic polymers such as PEI. Studies on the utilization of peptides have therefore been carried out recently to overcome these problems. For these reasons, the human transcription factor Hph-1, which is currently known as a protein transduction domain (PTD), was investigated in this study to evaluate its potential as a gene delivery carrier. Although its transfection efficiency was about 10-fold lower than PEI, it displayed almost no cytotoxicity even at concentrations as high as $100{\mu}M$. Hph-1 was oxidatively polymerized to yield poly-Hph-1. The cell viability of poly-Hph-1 transfected U87MG and NIH-3T3 cells was almost as high as the control (untreated) groups, and the transfection efficiency was about 10-fold higher than PEI. This study serves as a preliminary evaluation of Hph-1 and encourages further investigation.

Enhancement of Adenoviral Transduction and Immunogenecity of Transgenes by Soluble Coxsackie and Adenovirus Receptor-TAT Fusion Protein on Dendritic Cells

  • Kim, Hye-Sung;Park, Mi-Young;Park, Jung-Sun;Kim, Chang-Hyun;Kim, Sung-Guh;Oh, Seong-Taek;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.192-198
    • /
    • 2006
  • Background: Investigating strategy to enhance efficiency of gene transfer via adenovirus is critical to sustain gene expression in targeted cells or tissues to regulate immune responses. However, the use of adenovirus as a gene delivery method has been limited by the native tropism of the virus. In this study, the critical parameter is to improve the efficient binding of viral particles to the plasma membrane prior to cellular uptake. Methods: Human immunodeficiency virus (HIV-1) trans-acting activator of transcription (TAT), a protein transduction domain, was fused to the ectodomain of the coxsackie-adenovirus receptor (CAR). The CAR-TAT protein was produced from a Drosophila Schneider 2 cells (S2) transfected with CAR-TAT genes. The function of CARTAT was analyzed the efficiency of adenoviral gene transfer by flow cytometry, and then immunizing AdVGFP with CAR-TAT was transduced on dendritic cells (DCs). Results: S2 transfectants secreting CAR-TAT fusion protein has been stable over a period of 6 months and its expression was verified by western blot. Addition of CAR-TAT induced higher transduction efficiency for AdVGFP at every MOI tested. When mice were vaccinated with DC of which adenoviral transduction was mediated by CAR-TAT, the number of IFN-${\gamma}$ secreting T-cells was increased as compared with those DCs transduced without CAR-TAT. Conclusion: Our data provide evidence that CAR-TAT fusion protein enhances adenoviral transduction and immunogenecity of transgenes on DCs and may influence on the development of adenoviral-mediated anti-tumor immunotherapy.

Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo

  • Ahn, Eun-Hee;Kim, Dae-Won;Kim, Duk-Soo;Woo, Su-Jung;Kim, Hye-Ri;Kim, Joon;Lim, Soon-Sung;Kang, Tae-Cheon;Kim, Dong-Joon;Suk, Ki-Tae;Park, Jin-Seu;Luo, Qiuxiang;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.329-334
    • /
    • 2011
  • Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1${\beta}$, and tumor necrosis factor-${\alpha}$. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases.

The optimal conditions to improve retrovirus-mediated transduction efficiency to NIH 3T3 cells (레트로바이러스(retrovirus)의 NIH 3T3 세포로의 유전자 전달효율을 증가시키기 위한 적절한 조건들)

  • Lee, Jun Ah;Lee, Kang-Min;Lee, Hyun Jae;Lee, Yun Jeong;Kim, Dong Ho;Lim, Jung Sub;Park, Kyung-Duk
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.10
    • /
    • pp.1011-1017
    • /
    • 2007
  • Purpose : We tried to assess the optimal conditions to improve low transduction efficiency and their effect on target cells. Methods : Cultured NIH 3T3 cells were incubated with retroviral vectors bearing an enhanced green fluorescent protein (eGFP) gene. We varied the ratio of viral vectors to target cells (1:1-1:8) and the number of transfections (${\times}1$, ${\times}2$), and compared transduction efficiencies. Also, the effects of polybrene on transduction efficiency and viability of target cells were assessed. Transduction of the eGFP gene was evaluated by observing NIH 3T3 cells under a fluorescence microscope and efficiencies were measured by the percentage of eGFP positive cells using FACscan. Results : As the ratio of retroviral vectors to target cells increased, transduction efficiency was greatly improved, from 7% (1:1) to 38% (1:4). However, transduction efficiency did not increase any more when the ratio increased from 1:4 to 1:8. Cells transfected twice showed higher transduction efficiencies than cells transfected once, at a ratio of 1:8. The eGFP gene transduced to NIH 3T3 cells sustained its expression during repeated passages. However, after the third passage (day 9), the percentage of eGFP positive cells began to decline. The degree of this decline in eGFP expression was lower in cells transfected twice than in cells transfected once (P<0.05). The addition of polybrene did not have any toxic effect on NIH 3T3 cells and greatly increased transduction efficiency (P=0.007). In addition to vector component, transduction efficiency was very sensitive to culture confluence. Cells cultured and transfected in 24-well plate showed higher transduction efficiency, although cells cultured in 6- well plate proliferated more (P=0.024). Conclusion : Our data could be used as a basis for retrovirus-based gene therapy. Further study will follow using human cells as target cells.

Active Component of Fatsia japonica Enhances the Transduction Efficiency of Tat-SOD Fusion Protein both In Vitro and In Vivo

  • Lee, Sun-Hwa;Kim, So-Young;Kim, Dae-Won;Jang, Sang-Ho;Lim, Soon-Sung;Kwon, Hyung-Joo;Kang, Tae-Cheon;Won, Moo-Ho;Kang, Il-Jun;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1613-1619
    • /
    • 2008
  • It has been reported that Tat-SOD can be directly transduced into mammalian cells and skin and acts as a potential therapeutic protein in various diseases. To isolate the compound that can enhance the transduction efficiency of Tat-SOD, we screened a number of natural products. 3-O-[$\beta$-D-Glucopyranosyl(1$\rightarrow$4)-$\alpha$-L-arabinopyranosyll-hederagenin (OGAH) was identified as an active component of Fatsia japonica and is known as triterpenoid glycosides (hederagenin saponins). OGAH enhanced the transduction efficiencies of Tat-SOD into HeLa cells and mice skin. The enzymatic activities in the presence of OGAH were markedly increased in vitro and in vivo when compared with the controls. Although the mechanism is not fully understood, we suggest that OGAH, the active component of Fatsia japonica, might change the conformation of the membrane structure and it may be useful as an ingredient in anti-aging cosmetics or as a stimulator of therapeutic proteins that can be used in various disorders related to reactive oxygen species (ROS).

Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage

  • Kim, Dae-Won;Kim, Duk-Soo;Kim, Mi-Jin;Kwon, Soon-Won;Ahn, Eun-Hee;Jeong, Hoon-Jae;Sohn, Eun-Jeong;Dutta, Suman;Lim, Soon-Sung;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.647-652
    • /
    • 2011
  • The protein transduction domains have been reported to have potential to deliver the exogenous molecules, including proteins, to living cells. However, poor transduction of proteins limits therapeutic application. In this study, we examined whether imipramine could stimulate the transduction efficiency of PEP-1 fused proteins into astrocytes. PEP-1-catalase (PEP-1-CAT) was transduced into astrocytes in a time- and dose-dependent manner, reducing cellular toxicity induced by $H_2O_2$. Additionally, the group of PEP-1-CAT + imipramine showed enhancement of transduction efficiency and therefore increased cellular viability than that of PEP-1-CAT alone. In the gerbil ischemia models, PEP-1-CAT displayed significant neuroprotection in the CA1 region of the hippocampus. Interestingly, PEP-1-CAT + imipramine prevented neuronal cell death and lipid peroxidation more markedly than PEP-1-CAT alone. Therefore, our results suggest that imipramine can be used as a drug to enhance the transduction of PEP-1 fusion proteins to cells or animals and their efficacies against various disorders.

Defective Interfering HIV-1 Pseudotypes Carrying Chimeric CD4 Protein

  • Park, Seung-Won;Ye, Zhiping;Schubert, Manfred;Paik, Soon-Young
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.566-572
    • /
    • 2001
  • Chimeric CD4 proteins were assembled. They contained the entire CD4 ectodomain that is linked to different membrane anchors. Membrane anchors consisted of either glucosyl phosphatidyl inositol (gpi), the transmembrane and cytoplasmic regions of HIV-1 Env protein, or the vesicular stomatitis virus G glycoprotein, respectively. The HIV-1 co-receptor CXCR4 and CD4 were independently inserted into viral envelopes. We compared the insertion of six different CD4/CXCR4 constructs into HIV-1 envelopes, as well as their functionality in targeting and specific infection of cells that constitutively express the HIV-1 Env protein. All of the six different HIV-1 (CD4/CXCR4) pseudotypes were able to transduce Env (+) cells at similar efficiency. In addition, stable transduction of the Env (+) recipient cells demonstrated that all chimeric proteins were functional as receptors for Env when inserted into HIV-1 envelopes. In fact, these results demonstrate for the first time a stable transduction by a targeted HIV-1 pseudotype virus.

  • PDF

Enhanced bone morphogenic protein adenoviral gene delivery to bone marrow stromal cells using magnetic nanoparticle

  • Lee, Jung-Tae;Jung, Jae-Whan;Choi, Jae-Yong;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.3
    • /
    • pp.112-119
    • /
    • 2013
  • Objectives: This study investigated the question of whether adenoviral magnetofection can be a suitable method for increasing the efficacy of gene delivery into bone marrow stromal cell (BMSC) and for generation of a high level of bone morphogenic protein (BMP) secretion at a minimized viral titer. Materials and Methods: Primary BMSCs were isolated from C57BL6 mice and transduced with adenoviral vectors encoding ${\beta}$ galactosidase or BMP2 and BMP7. The level of BMP secretion, activity of osteoblast differentiation, and cell viability of magnetofection were measured and compared with those of the control group. Results: The expression level of ${\beta}$ galactosidase showed that the cell transduction efficiency of AdLacZ increased according to the increased amount of magnetic nanoparticles. No change in cell viability was observed after magnetofection with 2 ${\mu}L$ of magnetic nanoparticle. Secretion of BMP2 or BMP7 was accelerated after transduction of AdBMP2 and 7 with magnetofection. AdBMP2 adenoviral magnetofection resulted in up to 7.2-fold higher secretion of BMP2, compared with conventional AdBMP2-transduced BMSCs. Magnetofection also induced a dramatic increase in secretion of BMP7 by up to 10-fold compared to the control. Use of only 1 multiplicity of infection (moi) of magnetofection with adenoviral transduction of AdBMP2 or AdBMP7 resulted in significantly higher transgene expression compared to 20 moi of conventional adenoviral transduction. Conclusion: Magnetic particle-mediated gene transudation is a highly efficient method of gene delivery to BMSCs. Magnetofection can lower the amount of viral particles while improving the efficacy of gene delivery.