• 제목/요약/키워드: protein transduction

검색결과 600건 처리시간 0.026초

Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young;Rhee, Hong-Soon;H. Yoon, Sung-Yong;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.255-262
    • /
    • 2008
  • Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.

Proteomic Evaluation of Cellular Responses of Saccharomyces cerevisiae to Formic Acid Stress

  • Lee, Sung-Eun;Park, Byeoung-Soo;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • 제38권4호
    • /
    • pp.302-309
    • /
    • 2010
  • Formic acid is a representative carboxylic acid that inhibits bacterial cell growth, and thus it is generally considered to constitute an obstacle to the reuse of renewable biomass. In this study, Saccharomyces cerevisiae was used to elucidate changes in protein levels in response to formic acid. Fifty-seven differentially expressed proteins in response to formic acid toxicity in S. cerevisiae were identified by 1D-PAGE and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses. Among the 28 proteins increased in expression, four were involved in the MAP kinase signal transduction pathway and one in the oxidative stress-induced pathway. A dramatic increase was observed in the number of ion transporters related to maintenance of acid-base balance. Regarding the 29 proteins decreased in expression, they were found to participate in transcription during cell division. Heat shock protein 70, glutathione reductase, and cytochrome c oxidase were measured by LC-MS/MS analysis. Taken together, the inhibitory action of formic acid on S. cerevisiae cells might disrupt the acidbase balance across the cell membrane and generate oxidative stress, leading to repressed cell division and death. S. cerevisiae also induced expression of ion transporters, which may be required to maintain the acid-base balance when yeast cells are exposed to high concentrations of formic acid in growth medium.

Signaling Protein Complex Formation in Detergent Resistant Membrane of Bovine Photoreceptor Rod Outer Segments

  • Liu, Han;Seno, Keiji;Hayashi, Fumio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.275-277
    • /
    • 2002
  • We have recently found that a detergent-resistant raft like membrane (DRM) can be prepared from bovine rod outer segment membranes as a low-density buoyant fraction in sucrose density gradient ultracentrifugation. G protein (transducin) and its effector enzyme (phosphodiesterase: PDE) drastically change their affinities to DRM in the process of phototransduction. We report here that the recruitment of transducin and/or $^2$PDE to DRM has close relationship with their states in signal transduction. Active T$\alpha$/PDE-complex has a high affinity to DRM, whereas inactive transducin, or inactive PDE are excluded from DRM. Active T$\alpha$/PDE-complex seems to bind to a GTPase activating protein (GRS9) in multi- protein complexes localized on DRM. Physiological significance of the multi-protein complex on the raft-like membrane in vertebrate phototransduction would be discussed.

  • PDF

Nitrosative protein tyrosine modifications: biochemistry and functional significance

  • Yeo, Woon-Seok;Lee, Soo-Jae;Lee, Jung-Rok;Kim, Kwang-Pyo
    • BMB Reports
    • /
    • 제41권3호
    • /
    • pp.194-203
    • /
    • 2008
  • Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neuro-degenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.

급성 폐손상에서 호중구 활성화의 분자학적 기전 (Molecular Mechanisms of Neutrophil Activation in Acute Lung Injury)

  • 염호기
    • Tuberculosis and Respiratory Diseases
    • /
    • 제53권6호
    • /
    • pp.595-611
    • /
    • 2002
  • Akt/PKB protein kinase B, ALI acute lung injury, ARDS acute respiratory distress syndrome, CREB C-AMP response element binding protein, ERK extracelluar signal-related kinase, fMLP fMet-Leu-Phe, G-CSF granulocyte colony-stimulating factor, IL interleukin, ILK integrin-linked kinase, JNK Jun N-terminal kinase, LPS lipopolysaccharide, MAP mitogen-activated protein, MEK MAP/ERK kinase, MIP-2 macrophage inflammatory protein-2, MMP matrix metalloproteinase, MPO myeloperoxidase, NADPH nicotinamide adenine dinucleotide phosphate, NE neutrophil elastase, NF-kB nuclear factor-kappa B, NOS nitric oxide synthase, p38 MAPK p38 mitogen activated protein kinase, PAF platelet activating factor, PAKs P21-activated kinases, PMN polymorphonuclear leukocytes, PI3-K phosphatidylinositol 3-kinase, PyK proline-rich tyrosine kinase, ROS reactive oxygen species, TNF-${\alpha}$ tumor necrosis factor-a.

Coexpression and protein-protein complexing of DIX domains of human Dvl1 and Axin1 protein

  • Choi, Seung-Hye;Choi, Kyung-Mi;Ahn, Hyung-Jun
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.609-613
    • /
    • 2010
  • The Dvl and Axin proteins, which are involved in the Wnt signaling pathway, each contain a conserved DIX domain in their sequences. The DIX domain mediates interaction between Dvl and Axin, which together play an important role in signal transduction. However, the extremely low production of DIX domain fragments in E. coli has prevented more widespread functional and structural studies. In this study, we demonstrate that the DIX domains of Dvl and Axin are expressed noticeably in a multi-cistronic system but not in a mono-cistronic system. Formation of the $DIX_{Dvl1}-DIX_{Axin1}$ complex was investigated by affinity chromatography, SEC and crystallization studies. Unstable DIX domains were stabilized by complexing with counterpart DIX domains. The results of the preliminary crystallization and diffraction of the $DIX_{Dvl1}-DIX_{Axin1}$ complex may prove useful for further crystallographic studies.

Virginiamycin 생합성 유도인자 Virginiae butanolide C에 의한 2차 대사산물 생산의 유도 (Induction of Secondary Metabolites by Virginiamycin Inducing Factor, Virginiae Butanolide C)

  • 김현수;강선영
    • 한국미생물·생명공학회지
    • /
    • 제22권5호
    • /
    • pp.459-466
    • /
    • 1994
  • Virginiae butanolide C(VB-C) is one of the butyrolactone autoregulators, which triggers the production of virginiamycin in Streptomyces virginiae. Streptomyces longwoodensis was selected as a test strain to investigate new VB-C functions. When 100 ng/ml of the synthetic VB-C was added into the culture at 5 hour and 0 hour, the initial production time of antibiotics and a dark blue pigment were shortened by 4~6 hours and 2~4 hours, respectively. HPLC analysis revealed the production of several new antibiotics by VB-C addition. In the SDS-PAGE analysis of the total protein from mycelium several new protein bands showed up and the amounts of certain protein bands increased in the presense of VB-C. The existence of specific VB-C binding protein was confirmed from S. longwoodensis in relation to VB-C signal transduction. These results suggest that the VB-C might have an ability to induce the production of secondary metabolites in Streptomy- ces longwoodensis.

  • PDF

The Receptor-Ligand Interaction Revealed by a Homology Modelling of the Receptor Binding Domain of Human Thrombopoietin

  • Song, Jin-Soo;Park, Heung-Rok;Hong, Hyo-Jeong;Yu, Myeong-Hee;Ryu, Seong-Eon
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1997년도 학술발표회
    • /
    • pp.43-43
    • /
    • 1997
  • Platelet production in blood is regulated by a lineage specific humoral factor called thrombopoietin (TPO). The amino terminal domain of TPO (TPO-N) has a sequence homology to erythropoietin (EPO) and is responsible for the signal transduction mediated by the TPO receptor, c-mpl.(omitted)

  • PDF

Proteomic Analysis of Resting and Activated Human $CD8^+$ T Cells

  • Koo Jung-Hui;Chae Wook-Jun;Choi Je-Min;Nam Hyung-Wook;Morio Tomohiro;Kim Yu-Sam;Jang Yang-Soo;Choi Kwan-Yong;Yang Jung-Jin;Lee Sang-Kyou
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.911-920
    • /
    • 2006
  • [ $CD8^+$ ] T Iymphocytes with the cytotoxic activity and capability to release various cytokines are the major players in immune responses against viral infection and cancer. To identify the proteins specific to resting or activated human CD8$^+$ T cells, human CD8$^+$ T cells were activated with anti-CD3+anti-CD28 mAb in the presence of IL-2. The solubilized proteins from resting and activated human CD8$^+$ T cells were separated by high-resolution two-dimensional polyacrylamide gel electrophoresis, and their proteomes were analyzed. Proteomic analysis of resting and activated T cells resulted in identification of 35 proteins with the altered expression. Mass spectrometry coupled with Profound and SWISS-PROT database analysis revealed that these identified proteins are to be functionally associated with cell proliferation, metabolic pathways, antigen presentation, and intracellular signal transduction pathways. We also identified six unknown proteins predicted from genomic DNA sequences specific to resting or activated CD8$^+$ T cells. Protein network studies and functional characterization of these novel proteins may provide new insight into the signaling transduction pathway of CD8$^+$ T cell activation.

골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성 (Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles)

  • 김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제19권4호
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF