• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.032 seconds

Expression of CDX2 and Villin in Gastric Cardiac Intestinal Metaplasia and the Relation with Gastric Cardiac Carcinogenesis

  • Xiao, Zhong-Yue;Ru, Yi;Sun, Jiang-Tao;Gao, She-Gan;Wang, Yu-Feng;Wang, Li-Dong;Feng, Xiao-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.247-250
    • /
    • 2012
  • Objective: To determine whether CDX2 and villin protein expression are associated with intestinal metaplasia (IM) in gastric cardiac mucosa and to explore the relationship with evolution of gastric cardiac adenocarcinoma (GCA). Methods: We studied 143 gastric cardiac biopsy or resection specimens from Henan province China, including 25 cardiac gastritis specimens with IM, 65 dysplasia specimens with IM and 35 gastric cardiac adenocarcinoma specimens and stained them for CDX2 and villin by the immunohistochemical SP method. 15 normal gastric cardiac biopsy specimens were also collected as control. Results: (1) Normal gastric mucosa presented no CDX2 and villin expression. The positive rates of CDX2 protein in cardiac gastritis with IM, dysplasia with IM, and carcinoma tissues were 84.0% (21/25), 66.7% (32/48) and 36.4% (20/55), respectively. While the positive rates of villin protein in cardiac gastritis with IM, dysplasia with IM, and carcinoma tissues were 76.0% (19/25), 70.8% (34/48) and 45.5% (25/55), respectively. There were significant differences among the three groups for both CDX2 and villin (P<0.01). Spearman's rank correlation coefficient(rho) showed a close correlation between the two proteins (r=0.843, P<0.01) and both were positively related with tumor differentiation (both P<0.05), but not associated with age, sex, invasion and metastasis of lymph node (P>0.05). Conclusion: Our results suggest that ectopic expression of CDX2 and villin may be involved in early-stage IM and tumorigenesis in gastric cardia and the expression of villin may be regulated by CDX2.

Effects of a Herbal Preparation HJ01 on Adipocyte Differentiation in OP9 Cells and the Poloxamer-407 Induced Hyperlipidemia in Mice (HJ01이 OP9세포에서의 지방 분화와 P-407로 유발한 고지혈증 흰쥐에 미치는 영향)

  • Park, Jung-Eun;Han, Sang-Yong;Choi, Eun-Sik;Chong, Myong-Soo;Kim, Yun-Kyung
    • Herbal Formula Science
    • /
    • v.21 no.1
    • /
    • pp.99-110
    • /
    • 2013
  • Objectives : This study was designed to investigate the effect of a herbal preparation HJ01 consisting of Salicornia herbacea, Citri Reticulatae Pericarpium, Crataegi Fructus and Glycyrrhizae Radix on adipocyte differentiation in OP9 cells and on poloxamer 407(P-407)-induced hyperlipidemia in mice. Methods : 1. MTT assay was used to evaluate the potential cytotoxicity of Salicornia herbacea, Citri Reticulatae Pericarpium, Crataegi Fructus, Glycyrrhizae Radix and HJ01, respectively. 2. Bone-marrow derived OP9 cells were treated with HJ01, and the alterations in fat storage in the cells were determined by the Oil red O assay. 3. The protein level of CAAAT/enhancer binding protein alpha($C/EBP{\alpha}$), as a adipocyte differentiation marker, was examined using western blot analysis in differentiated OP6 cells. 4. Adult male C57BL6 mice received intraperitoneal injections of P407 to induce hyperlipidemia, simultaneously, were treated with HJ01 for 4 weeks. Then the cholesterol (TC), triglyceride (TG) and high-density lipoprotein-cholesterol (HDL-c) levels in sera and liver tissues were measured. Results : 1. The MTT assay exhibited that Salicornia herbacea, Citri Reticulatae Pericarpium, Crataegi Fructus, Glycyrrhizae Radix and HJ01 showed no significant cytotoxicity in tested dosages. 2. Ten days' treatment with HJ01 markedly inhibited the increases in fat storage in differentiated OP6 cells. 3. Four weeks' treatment with HJ01 down-regulated the protein level of CAAAT/enhancer binding protein alpha($C/EBP{\alpha}$) but up-regulated the levels of adiponectin in differentiated OP9 cells. 5. HJ01 inhibited the accumulation of TC and TG in liver tissues and increased serum levels of TC in hyperlipidemic mice. Conclusions : These results suggest that HJ01 can in vitro inhibit adipocyte differentiation and fat storage in OP6 cells, in vivo improve the hyperlipidemia induced by P-407 in mice, which may be mediated by promoting glucose uptake and improving a lipid metabolite profile.

MAGED4 Expression in Glioma and Upregulation in Glioma Cell Lines with 5-Aza-2'-Deoxycytidine Treatment

  • Zhang, Qing-Mei;Shen, Ning;Xie, Sha;Bi, Shui-Qing;Luo, Bin;Lin, Yong-Da;Fu, Jun;Zhou, Su-Fang;Luo, Guo-Rong;Xie, Xiao-Xun;Xiao, Shao-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3495-3501
    • /
    • 2014
  • Melanoma-associated antigen (MAGE) family genes have been considered as potentially promising targets for anticancer immunotherapy. MAGED4 was originally identified as a glioma-specific antigen. Current knowledge about MAGED4 expression in glioma is only based on mRNA analysis and MAGED4 protein expression has not been elucidated. In the present study, we investigated this point and found that MAGED4 mRNA and protein were absent or very lowly expressed in various normal tissues and glioma cell line SHG44, but overexpressed in glioma cell lines A172,U251,U87-MG as well as glioma tissues, with significant heterogeneity. Furthermore, MAGED4 protein expression was positively correlated with the glioma type and grade. We also found that the expression of MAGED4 inversely correlated with the overall methylation status of the MAGED4 promoter CpG island. Furthermore, when SHG44 and A172 with higher methylation were treated with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-AZA-CdR) reactivation of MAGED4 mRNA was mediated by significant demethylation in SHG44 instead of A172. However, 5-AZA-CdR treatment had no effect on MAGED4 protein in both SHG44 and A172 cells. In conclusion, MAGED4 is frequently and highly expressed in glioma and is partly regulated by DNA methylation. The results suggest that MAGED4 might be a promising target for glioma immunotherapy combined with 5-AZA-CdR to enhance its expression and eliminate intratumor heterogeneity.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

The Herbal Formula C-DM3 Improves the Changes of Diabetes-Related Biomarkers in High-Fat Diet-Induced Obese Mice through Regulation of the IRS1/PI3K/AKT and AMPK Signaling Pathways in the Liver and Pancreas (고지방식이를 통해 비만이 유발된 마우스에서 C-DM3 복합추출물의 항비만 및 항당뇨 효능 연구)

  • Yoon Yong Choi;Chenzi Lyu;Tong Zhang;Haifeng Shao;Xianglong Meng;Chu Duc Thanh;Jong-Seong Kang;Hyo Won Jung;Yong-Ki Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.25-40
    • /
    • 2024
  • Objectives: In the present study, we investigated the effects of clean-diabetes mellitus 3 (C-DM3), a herbal formula with Trichosanthis Radix, Coptidis Rhizoma, Crataegi Fructus, and Cinnamomi Cortex, on the pathological and serological symptoms of diabetes and its related molecular mechanisms in diet-induced obese mice. Methods: We prepared an obese mouse model using a high-fat diet for 8 weeks and then administered the C-DM3 extract for 4 weeks. The changes of pathological and serological biomarkers for diabetes assessment were measured in the mice and histological changes were observed in the liver and pancreas tissues. We also identified the main compounds in the C-DM3 extract using high pressure liquid chromatography (HPLC) and analyzed the molecular mechanism of the disease condition by network pharmacological analysis. Results: In the in vivo, the administration of C-DM extract to obese mice significantly reduced body weight gain, fatty liver symptoms, and muscle loss, and decreased the levels of fasting blood glucose, insulin, aspertate aminotransferase, triglycerides, and low-density lipoprotein-cholesterol. In addition, C-DM extract significantly increased the phosphorylation of insulin receptor substrate 1, protein kinase b (AKT), phosphoinositide 3-kinase (PI3K), adenosine monophosphate-activated protein kinase, and glucose transporter 4 in all pancreatic and liver tissues, with inhibition of histopathological changes in obese mice. HPLC analysis identified hyperoside, berberine, epiberberine, columbamin, coptisine, coumarin, jatrorrhizine, and citric acid as the main compounds. In the network pharmacological analysis, the molecular targets of C-DM3 extract on obesity and diabetes were shown as the insulin, AKT, PI3K, and mitogen-activated protein kinase pathways with the regulation of inflammatory molecules interleukin 6 (IL-6), jun proto-oncogene, and IL-1β, which matched our in vivo targets. Conclusions: Based on these results, C-DM3 extract is expected to be effective in improving obesity and preventing diabetic progression.

Synthesis and evaluation of PDLs22 recombinant protein (PDLs22 재조합 단백질의 합성과 평가)

  • Lee, Kyoung Yeon;Choi, Yong-Seok;Lee, You-Jin;Bae, Hyun-Sook;Kim, Heung-Jeong;Cho, Kwang-Hee;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • Periodontal ligament (PDL) is the connective tissue located between the tooth root and alveolar bone. In a previous study, PDLs22 was isolated as a PDL-specific gene by using subtractive hybrid-ization between cultured PDL fibroblasts and gingival fibroblasts. It was also suggested that PDLs22 plays important roles in the development, differentiation and maintenance of periodontal tissues. However, little is known about functional study of PDLs22 using recombinant protein in PDL fibroblast differentiation and periodontium formation. In this study, in order to produce the PDLs22 recombinat protein, PDLs22 expression vector were constructed and expressed its protein in various host cell and temperature conditions. The results were as follows: 1. PDLs22 protein was not strongly expressed In the induction system using pRSET-PDLs22 construct. 2. When the BL21(DE3) pLysS was used as a expression host, PDLS22 protein was strongly ex-pressed in the induction system using pHCEIIBNd-PDLs22 construct. 3. The PDLs22 protein was recognized at a molecular weight of 28 kDa in western blots. 4. Almost of the expressed PDLs22 protein was not soluble and observed like as inclusion body. 5. The protein solubility was not improved after modification of induction time and temperature during PDLs22 protein production. In this study, the system for the PDLs22 protein production was connstructed. However, the re-results suggest that further studies will be needed to produce the considerable amount of PDLs22 re-combinat protein, which can use for the periodontal regeneration.

Expression of Phospholipase C Isozymes in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C 동위효소의 발현양상)

  • Hwang, Sung-Chul;Mah, Kyung-Ae;Choi, So-Yeon;Oh, Yoon-Jung;Choi, Young-In;Kim, Deog-Ki;Lee, Hyung-Noh;Choi, Young-Hwa;Park, Kwang-Ju;Lee, Yi-Hyeong;Lee, Kyi-Beom;Ha, Mahn-Joon;Bae, Yoon-Su
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.310-322
    • /
    • 2000
  • Background : Phospholipase C(PLC) plays an important role in cellular signal transduction and is thought to be critical in cellular growth, differentiation and transformation of certain malignancies. Two second messengers produced from the enzymatic action of PLC are diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). These two second messengers are important in down stream signal activation of protein kinase C and intracellular calcium elevation. In addition, functional domains of the PLC isozymes, such as Src homology 2 (SH2) domain, Src homology 3 (SH3) domain, and pleckstrin homology (PH) domain play crucial roles in protein translocation, lipid membrane modificailon and intracellular memrane trafficking which occur during various mitogenic processes. We have previously reported the presence of PLC-${\gamma}1$, ${\gamma}2$, ${\beta}1$, ${\beta}3$, and ${\delta}1$ isozymes in normal human lung tissue and tyrosine-kinase-independent activation of phospholipase C-${\gamma}$ isozymes by tau protein and AHNAK. We had also found that the expression of AHNAK protein was markedly increased in various mstologic types of lung can∞r tissues as compared to the normallungs. However, the report concerning expression of various PLC isozymes in lung canærs and other lung diseases is lacking. Therefore, in this study we examined the expression of PLC isozymes in the paired surgical specimens taken from lung cancer patients. Methods : Surgically resected lung cancer tissue samples taken from thirty seven patients and their paired normal control lungs from the same patients, The expression of various PLC isozymes were studied. Western blot analysis of the tissue extracts for the PLC isozymes and immunohistochemistry was performed on typical samples for localization of the isozyme. Results : In 16 of 18 squamous cell carcinomas, the expression of PLC-${\gamma}1$ was increased. PLC-${\gamma}1$ was also found to be increased in all of 15 adenocarcinoma patients. In most of the non-small cell lung cancer tissues we had examined, expression of PLC-${\delta}1$ was decreased. However, the expression of PLC-${\delta}1$ was markedly increased in 3 adenocarcinomas and 3 squamous carcinomas. Although the numbers were small, in all 4 cases of small cell lung cancer tissues, the expression of PLC-${\delta}1$ was nearly absent. Conclusion : We found increased expression of PLC-${\gamma}1$ isozyme in lung cancer tissues. Results of this study, taken together with our earlier findings of AHNAK protein-a putative PLD-${\gamma}$, activator-over-expression, and the changes observed in PLC-${\delta}1$ in primary human lung cancers may provide a possible insight into the derranged calcium-inositol signaling pathways leading to the lung malignancies.

  • PDF

Analysis of Inflammatory Cytokines from the Cecum and Proximal Colon of Mice Infected with Enterotoxigenic Bacteroides fragilis

  • Hwang, Soonjae;Lee, Min Ho;Gwon, Sun-Yeong;Lee, Seunghyung;Jung, Dongju;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.142-146
    • /
    • 2013
  • Enterotoxigenic Bacteroides fragilis (ETBF) causes inflammatory diarrhea in humans and animals and is also implicated in colorectal cancer. ETBF-infected mice exhibit a prominent large intestinal inflammation characterized by neutrophil infiltration and induction of the Th17 response. In this study, we examined differences in the secreted cytokine profile of the cecum and proximal colon of ETBF-infected mice using an antibody array. Of the cytokines examined, we found that the cecal tissues from ETBF-infected mice secreted elevated levels of G-CSF, IL-6, IL-17 and LIX compared to non-toxigenic Bacteroides fragilis (NTBF) and Mock infected mice. The proximal colon tissues from ETBF-infected mice secreted higher levels of G-CSF, IL-6, KC, LIX, MIP-1g and MCP-1. This study demonstrates that the cecum and colon should be considered separately when assays are used to determine immune responsiveness to enteric infections.

Prognostic Value of Phosphorylated mTOR/RPS6KB1 in Non-small Cell Lung Cancer

  • Zhang, Yong;Ni, Huan-Juan;Cheng, De-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3725-3728
    • /
    • 2013
  • Background: The mammalian target of rapamycin (mTOR) /RPS6KB1 activation has recently been implicated in tumour development, but its role in lung cancer remains unclear. The aim of this study was to explore the role of mTOR/RPS6KB1 signaling pathway in non-small-cell lung cancer (NSCLC). Methods: Immunohistochemistry was performed to assess the expression of phosphorylated mammalian target of rapamycin (p-mTOR) and its downstream ribosomal phosphorylated RPS6KB1 (p-RPS6KB1) in NSCLC patients. We also analyzed p-mTOR/p-RPS6KB1 protein expression in 45 fresh NSCLC tissues using Western blotting. Results: The expression level of p-mTOR and p-RPS6KB1 was significantly higher in NSCLC tumor specimens than that in adjacent noncancerous normal lung tissues (P<0.01). p-mTOR expression correlated with p-RPS6KB1. Furthermore, high expression level of p-mTOR or p-RPS6KB1 in NSCLC was associated with a shorter overall survival (both P<0.01). Multivariate analysis indicated high level of p-mTOR expression was an independent prognostic factor (HR=2.642, 95%CI 1.157-4.904, p=0.002). Conclusions: p-mTOR and p-RPS6KB1 could be useful prognostic markers for NSCLC.