• Title/Summary/Keyword: protein size

Search Result 1,452, Processing Time 0.023 seconds

Nanomechanical Protein Detectors Using Electrothermal Nano-gap Actuators (나노간극 구동기를 이용한 나노기계적 단백질 검출기)

  • 이원철;조영호
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1997-2003
    • /
    • 2004
  • This paper presents a new method and an associated device, capable of detecting protein presence and size from the shift of the mechanical stiffness changing points due to the presence and size of proteins in a nano-gap actuator. Compared to the conventional resonant detection method, the present nanomechanical stiffness detection method shows higher precision for protein detection. The present method also offers simple and inexpensive protein detection devices by removing labeling process and optical components. We design and fabricate the nanomechanical protein detector using an electrothermal actuator with a nano-gap. In the experimental study, we measure the stiffness changing points and their coordinate shift from the devices with and without target proteins. The fabricated device detects the protein presence and the protein size of 14.0$\pm$7.4nm based on the coordinate shift of stiffness changing points. We experimentally verify the protein presence and size detection capability of the nanomechanical protein detector for applications to high-precision biomolecule detection.

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

Effects of Dietary Protein Levels on Organ Growth and Protein Metabolism in Early and Normally Weaned Rats (단백질 섭취수준이 조기 이유 및 정상이유 흰쥐의 기관성장과 단백질 대사에 미치는 영향)

  • 박미나
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.5-12
    • /
    • 1998
  • This study was designed to examine how dietary protein levels affect organ growth and protein metabolism in early and normally weaned rats. Early and normally weaned rats separated fro the dam on the 15th and 121st day postpartum, respectively. were fed diets containing three levels of protein : low(10%) , normal (20%),and high(40%) . On the 35th day, the weight and DNA, RNA and protein contents in brain , liver, and kidney were determined to ascertain organ and cellular growth. Furthermore, serum total protein , albumin , $\alpha$-amino N and creatine and urinary urea N, and creatinine were determined in order to ascertain protein metabolism and renal functions. Dietary protein levels were not observed to significantly affect total DNA content, which may represent an index of cell number in the liver, brain and kidney. Fresh weight and protein/DNA ratio, which may represent indices of cell size, significantly increased in proportion to dietary protein in the kidney. As for the early weaned rats , the liver cell size significantly decreased. Dietary protein levels and weaning periods did not affect serum total protein and albumin . However, serum urea-N significantly increased in proportion to dietary protein levels whereas serum $\alpha$-amino N was decreased by early weaning . Nitrogen retention was lower in early weaned rats fed low or high levels of protein than in normally weaned rats. The results demonstrate that low or high levels of dietary protein have less desirable effects on protein metabolism in prematurely weaned rats.

  • PDF

USE OF MOLD INHIBITOR FOR FEED STORAGE AND IMPROVED CHICK PERFORMANCE

  • Nahm, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.3
    • /
    • pp.285-291
    • /
    • 1991
  • Two experiments were conducted to evaluate the effect of mold inhibitor in the ration which had two different protein levels (18% and 12%) and two different particle sizes (80 or 40% of the particles in the ration less than 1.19 mm). The experimental diets with ave. 12.7% moisture which were treated at the level of 0.1% mold inhibitor were stored under 85% humidity and at $29{\pm}1^{\circ}C$ for 10 to 40 days. In experiment 1, after 40 days of storage the $CO_2$ production in the feed treated with mold inhibitor was higher (p < 0.01) than when 40% of the ration's panicle size was 1.19 mm. Aflatoxin production in the experimental diet with mold inhibitor was affected (p<0.05) by the levels of protein and the different particle size ranges after 40 days storage. The interaction of protein levels and particle size ranges on the anatoxin and $CO_2$ production was significant (p<0.05) at 40 days storage. In experiment 2, there was a decrease in total body weight gain and total feed intake observed in chicks fed the untreated diet of 18% protein with 40% of the particles in the ration less than 1.19 mm stored for 40 days. Feed conversion was depressed (p<0.05) in the chicks fed the untreated diets of both particle sizes. Particle size X types of feed interaction in feed conversion was significant (p<0.05).

Capillary Size-exclusion Chromatography as a Gel-free Strategy in Plasma Proteomics

  • Cho, Man-Ho;Wishnok, John S.;Tannenbaum, Steven R.
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.87-91
    • /
    • 2005
  • Although 2D-PAGE has been widely used as the primary method for protein separation, difficulties in displaying proteins with an extreme values of isoelectric paint (pI), molecular size and hydrophobicity limit the technique. In addition, time consuming steps involving protein transfer and extraction from the gel-pieces can result in sample loss. Here, we describe a novel protein separation technique with capillary size-exclusion chromatography (CSEC) for rapid protein identification from human plasma. The method includes protein fractionation along with molecular size followed by in-solution tryptic digestion and peptide analysis through reversed phase liquid chromatography (RPLC) coupled to nanoflow electrospray-tandem mass spectrometry (ESI-MS/MS). Tryptic peptides are applied an a $100\;{\mu}m\;i.d.{\times}10mm$ length pre-column and then separated on a $75\;{\mu}m{\times}200mm$ analytical column at -100 nL/min flaw rate. Proteins were identified over the wide ranges of pI (3.7-12.3) when this technique was applied to the analysis of $1-2\;{\mu}L$ of human plasma. This gel-free system provides fast fractionation and may be considered a complementary technique to SDS-PAGE in proteomics.

Refolding of Proteins at High Concentration by Size Exclusion Chromatography

  • Guan, Yixin;Gao, Yonggui;Yao, Shanjing;Cho, Man-Gi
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2002.09a
    • /
    • pp.9-17
    • /
    • 2002
  • Renaturation of Lysozyme by size exclusion chromatography(SEC) to improve yield as well as the initial and final protein concentration has been studied in detail, Although urea decreases the rate of proteins refolding, it can suppress protein aggregation to sustain pathway of correct refolding at high protein concentration, and there existed an optimum urea concentration in renaturation buffer. Lysozyme was successfully refolded from initial protein concentration of up to 100mg/m1 by SEC, the yield was more than 40%. And the refolding of Interferon-${\gamma}$ was further investigated.

  • PDF

Growth Habit and Protien Content of Various Wild Soybean Strains (각종 야생대두의 생육습성과 단백질함량)

  • Park, Hoon;Hur, Sam-Nam
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.1-4
    • /
    • 1979
  • Wild soybean plants(Glycine ussuriensis) collected from Korea(47 strains) and abroad(41 strains) were grown under field condition and classified according to the growth habit. Seeds were analyzed for protein content. The results were as follows: 1. Wild soybean plants were classified into three groups each by seed size, growth habit of stem, leaf size and flowering time. 2. Seed protein was higher in the strains with large leaves, tendril, stem or late flowering. 3. Glycine gracilis, supposed to be the intermediate species between cultivated and wild soybean(according to the stem growth habit, straight or semitendril, and seed size) was medium in protein content of seeds. 4. The average protein content of Glycine ussuriensis, 43.2%, was highest in comparison with those of others such as G. gracilis, 37.5%, or G. max, 36.2%. 5. One hundred seed weight of Amphicarpaea trisperm, similar to the wild soybean, was almost same as Glycine ussuriensis, but protein content of this species was lower than wild soybeans.

  • PDF

Functional Properties of Sesame Protein Concentrates Produced by Ultrafiltration (한외여과에 의해 제조된 참깨박 농축단백질의 기능적 특성)

  • 전정례;박정룡
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.5
    • /
    • pp.394-403
    • /
    • 2000
  • The functional properties of sesame protein concentrate(SPC) using different size of ultrafiltration(UF) membranes were examined and compared with those of conventional acid-precipitated sesame protein concentrate. The protein contents of SPC by UF with molecular size of 10K, 30K and look dalton membranes were 84.2%, 82.7%, and 76.4%, respectively, and that of acid-precipitated SPC was 88.7%. The nitrogen solubility of SPC by UF was higher than that of conventional SPC at various pH levels. Especially, it showed three-fold increase at near isoelectric point. However, water absorption capacity and fat absorption capacity of SPC by UF were decreased. For emulsion and foam properties, there were no significant differences between SPC by acid precipitation and SPC by UF method. At various pH levels, SPC by membrane with pore size of 30K dalton showed the highest emulsion properties. The SPC by UF had slightly higher viscosity than defatted sesame flour and SPC by acid precipitation.

  • PDF

Development and evaluation of probiotic delivery systems using the rennet-induced gelation of milk proteins

  • Ha, Ho-Kyung;Hong, Ji-Young;Ayu, Istifiani Lola;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1182-1193
    • /
    • 2021
  • The aims of this study were to develop a milk protein-based probiotic delivery system using a modified rennet-induced gelation method and to determine how the skim milk powder concentration level and pH, which can affect the rennet-induced intra- and inter-molecular association of milk proteins, affect the physicochemical properties of the probiotic delivery systems, such as the particle size, size distribution, encapsulation efficiency, and viability of probiotics in simulated gastrointestinal tract. To prepare a milk protein-based delivery system, skim milk powder was used as a source of milk proteins with various concentration levels from 3 to 10% (w/w) and rennet was added to skim milk solutions followed by adjustment of pH from 5.4 or 6.2. Lactobacillus rhamnosus GG was used as a probiotic culture. In confocal laser scanning microscopic images, globular particles with a size ranging from 10 ㎛ to 20 ㎛ were observed, indicating that milk protein-based probiotic delivery systems were successfully created. When the skim milk powder concentration was increased from 3 to 10% (w/w), the size of the delivery system was significantly (p < 0.05) increased from 27.5 to 44.4 ㎛, while a significant (p < 0.05) increase in size from 26.3 to 34.5 ㎛ was observed as the pH was increased from 5.4 to 6.4. An increase in skim milk powder concentration level and a decrease in pH led to a significant (p < 0.05) increase in the encapsulation efficiency of probiotics. The viability of probiotics in a simulated stomach condition was increased when probiotics were encapsulated in milk protein-based delivery systems. An increase in the skim milk powder concentration and a decrease in pH resulted in an increase in the viability of probiotics in simulated stomach conditions. It was concluded that the protein content by modulating skim milk powder concentration level and pH were the key manufacturing variables affecting the physicochemical properties of milk protein-based probiotic delivery systems.

Assessment of Vertebral Left Atrial Size and C-reactive Protein in Dogs With Myxomatous Mitral Valve Disease

  • Hwang, Sun-Hwee;Song, Kun Ho
    • Journal of Veterinary Clinics
    • /
    • v.38 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • Recently, a new method of evaluating left atrial size called vertebral left atrial size (VLAS) was introduced in dogs. Total 155 dogs were examined at the Veterinary Medical Teaching Hospital of Chungnam National University. In this study, myxomatous mitral valve disease (MMVD) stage and VLAS showed a significant correlation in those dogs. Also, the relationship between C-reactive protein (CRP) and VLAS has yet to be examined. We found a strong positive correlation between VLAS and CRP-a significant increase in CRP was observed with increasing VLAS values. Thus, it would be beneficial to measure VLAS besides employing the current radiological and echocardiographic methods when evaluating heart size. Measuring VLAS could be an additional diagnostic tool for diagnosing MMVD in dogs.