• 제목/요약/키워드: protein phosphatase

검색결과 899건 처리시간 0.025초

Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과 (Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A)

  • 남기열
    • KSBB Journal
    • /
    • 제7권4호
    • /
    • pp.302-307
    • /
    • 1992
  • protein phosphatase 2A는 bovine brain homogenate의 세포질 fraction에서 얻어졌다. 기질로서 인산화된 histione H1을 이용하여 측정한 phosphatase 의 활성은 dipalmitoyIphophatidylcholine(DPPC) 혹은 phosphatidylserine/DPPC의 혼합물로 구성된 liposome의 존재하에서 저해되었다. Protein phosphatase 2A의 lipid membrane에의 결합은 다중층 지질막의 혼합물 계에서 liposome 의 양이 증가함에 따라서 상등액 중의 phosphatase의 활성이 감소하는 것으로 확인할 수 있었다. 또한 [$^{125}I$]protein phosphatase 2A가 liposome과 동시에 용출되는 것으로도 확인되었다. 그러나 liposome에 대한 protein phosphatase의 친화력은 높지 않았다. 한편, okadaic acid와 liposome은 협동으로 phosphatase의 활성을 감소시켰다. 이것은 okadaic acid가 lipid membrane이나 membrane에 결함한 phosphatase에는 결합하지 않는다는 것을 의미한다. 그러므로 lipid membrane에 의한 protein phosphatase 2A의 활성 저해 효과는 phosphatase 2A와 lipid membrane과의 결합에 의한 것이라고 설명될 수있다.

  • PDF

인간유래의 dual-specificity protein phosphatase, DUSP28의 활성분석 (Characterization of a Dual-Specificity Protein Phosphatase, Human DUSP28)

  • 정대균;김송이;윤정훈;김재훈
    • 생명과학회지
    • /
    • 제21권1호
    • /
    • pp.31-35
    • /
    • 2011
  • Dual-specificity protein phosphatase (DUSP)들은 인산화된 티로신 잔기와 인산화된 세린 또는 트레오닌 잔기를 탈인산화시키는 단백질 탈인산화효소 군을 이루고 있으며, 대부분의 DUSP들은 세포의 생존이나 분화에 관여하고 있다. 본 연구에서는 잘 알려지지 않은 인간 유래의 dual-specificity protein phosphatase인 DUSP28을 인간신장 cDNA에서 분리하였다. 대장균에서 생산된 재조합단백질은 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP)에 대하여 좋은 활성을 보였다. 다양한 저해제와 2가 금속이온들이 DUSP28의 활성에 미치는 영향을 조사하였다. 다른 DUSP들에서와는 다르게, $Zn^{2+}$은 DUSP28의 탈인산화활성을 강하게 억제하였다. 이러한 결과로부터 DUSP28이 Zn과 연관된 신호전달경로에 관여할 것으로 추정된다. 더욱이, DUSP28은 인산화된 티로신잔기를 더욱 선호하는 경향이 있는 것으로 나타났고, 이는 세포 내에서도 비슷한 작용을 할 것으로 예상된다.

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

인삼 사포닌이 개 심실 형질막의 $K^+$-의존성 포스파타제 활성에 미치는 영향 (Effect of Ginseng Saponins on $K^+-Dependent$ Phosphatase Activity of Dog Cardiac Sarcolemma)

  • 이신웅;이정수
    • 약학회지
    • /
    • 제36권2호
    • /
    • pp.129-136
    • /
    • 1992
  • The effects of ginseng saponins, gypsophila saponin, sodium dodecyl sulfate(SDS), and Triton X-100 on membrane $K^+-dependent$ phosphatase activity which is lipid dependent and represents dephosphorylation step of the complete Na+, $K^+-ATPase$ reaction were investigated in this study to elucidate whether the effects of ginseng saponins are due to the detergent action, using sarcolemma enriched preparation isolated from dog ventricle. $Na^+$, $K^+-ATPase$ and $K^+-dependent$ phosphatase activities of cardiac sarcolemma were about $143\;{\mu}mol$ Pi/mg protein/hr and $34\;{\mu}mol$ p-nitrophenol/mg protein/hr, respectively. While ginseng saponins (triol>total>diol) inhibited $K^+-dependent$ phosphatase activity, gypsophila saponin, and low dose of SDS($0.4\;{\mu}g/{\mu}g$ protein), and Triton X-100 ($0.6\;{\mu}g/{\mu}g$ protein) increased the enzyme activity, indicating disruptive effect of detergents on membrane barriers. The activating effect of low doses of Triton X-100 on membrane $K^+-dependent$ phosphatase appeared at concentration decreasing light scattering. However, the inhibitory effect of ginseng saponin appeared before a decrease in light scattering. These results suggest that low concentrations of ginseng saponins inhibit the membrane $K^+-dependent$ phosphatase by interacting directly with enzyme before membrane disruption.

  • PDF

A Protein Tyrosine Phosphatase Inhibitor, Pervanadate, Inhibits Angiotensin II-Induced β-Arrestin Cleavage

  • Jang, Sei-Heon;Hwang, Si Ae;Kim, Mijin;Yun, Sung-Hae;Kim, Moon-Sook;Karnik, Sadashiva S.;Lee, ChangWoo
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2009
  • ${\beta}$-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin $AT_1$ receptorbound ${\beta}$-arrestin 1 is cleaved after $Phe^{388}$ upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced ${\beta}$-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of ${\beta}$-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of ${\beta}$-arrestin 1 induced conformational changes and the cleavage of ${\beta}$-arrestin 1 without angiotensin $AT_1$ receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged ${\beta}$-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of ${\beta}$-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced ${\beta}$-arrestin cleavage.

Phosphotyrosine Protein Phosphatase Activity Is Inversely Related to Metastatic Ability in Rat Prostatic Tumor Cell Subclonal Lines

  • Lee, Han-Soo
    • BMB Reports
    • /
    • 제29권5호
    • /
    • pp.417-422
    • /
    • 1996
  • In clonal sublines with different metastatic ability derived from Dunning rat prostate tumor, phosphoamino acid levels of cellular proteins were determined. Cell lines with high metastatic ability exhibited 5-fold higher phosphotyrosine level than did cell lines with low metastatic ability, while the contents of phosphoserine and phosphothreonine were similar among cell lines examined, All cell lines showed similar activities of protein tyrosine kinases as well as overall protein kinases. Phosphotyrosine protein phosphatase (PTPP) activities of the cells with high metastatic ability were very low, compared to those of the cells with low metastatic ability, suggesting that the different phosphotyrosine levels among the cell lines were due to the difference in PTPP activities rather than protein tyrosine kinase activities. Cellular activities of prostatic acid phosphatase (PAcP), which has been reported to possess phosphotyrosine protein phosphatase activity, were shown to be inversely related to the phosphotyrosine levels and metastatic abilities of the prostate tumor cells, These results suggest that cellular PAcP activity, regulating phosphotyrosine levels of cellular proteins, is closely connected with the metastatic process in prostate tumor cells and can be utilized as a good biochemical marker for the diagnosis of metastasis of prostate tumor.

  • PDF

Cloning and Functional Characterization of Ptpcd2 as a Novel Cell Cycle Related Protein Tyrosine Phosphatase that Regulates Mitotic Exit

  • Zineldeen, Doaa H.;Wagih, Ayman A.;Nakanishi, Makoto
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3669-3676
    • /
    • 2013
  • Faithful transmission of genetic information depends on accurate chromosome segregation as cells exit from mitosis, and errors in chromosomal segregation are catastrophic and may lead to aneuploidy which is the hallmark of cancer. In eukaryotes, an elaborate molecular control system ensures proper orchestration of events at mitotic exit. Phosphorylation of specific tyrosyl residues is a major control mechanism for cellular proliferation and the activities of protein tyrosine kinases and phosphatases must be integrated. Although mitotic kinases are well characterized, phosphatases involved in mitosis remain largely elusive. Here we identify a novel variant of mouse protein tyrosine phosphatase containing domain 1 (Ptpcd1), that we named Ptpcd2. Ptpcd1 is a Cdc14 related centrosomal phosphatase. Our newly identified Ptpcd2 shared a significant homology to yeast Cdc14p (34.1%) and other Cdc14 family of phosphatases. By subcellular fractionation Ptpcd2 was found to be enriched in the cytoplasm and nuclear pellets with catalytic phosphatase activity. By means of immunofluorescence, Ptpcd2 was spatiotemporally regulated in a cell cycle dependent manner with cytoplasmic abundance during mitosis, followed by nuclear localization during interphase. Overexpression of Ptpcd2 induced mitotic exit with decreased levels of some mitotic markers. Moreover, Ptpcd2 failed to colocalize with the centrosomal marker ${\gamma}$-tubulin, suggesting it as a non-centrosomal protein. Taken together, Ptpcd2 phosphatase appears a non-centrosomal variant of Ptpcd1 with probable mitotic functions. The identification of this new phosphatase suggests the existence of an interacting phosphatase network that controls mammalian mitosis and provides new drug targets for anticancer modalities.

Structural and Biochemical Characterization of the Two Drosophila Low Molecular Weight-Protein Tyrosine Phosphatases DARP and Primo-1

  • Lee, Hye Seon;Mo, Yeajin;Shin, Ho-Chul;Kim, Seung Jun;Ku, Bonsu
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.1035-1045
    • /
    • 2020
  • The Drosophila genome contains four low molecular weight-protein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.

생약의 Protein Tyrosine Phosphatase 1B 저해활성 검색 (Screening of Medicinal Herbs for Inhibitory Activity against Protein Tyrosine Phosphatase 1B)

  • 이우정;김수남;윤구
    • 생약학회지
    • /
    • 제41권3호
    • /
    • pp.227-231
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B) is predicted to be therapeutic target in treatment of type 2 diabetes and obesity. Thus, in order to search for PTP1B inhibitors, we screened the inhibitory activity of PTP1B in the water extracts of 84 medicinal herbs. Among them, the extracts of Pini Folium, Magnoliae Cortex, Artemisiae asiaticae Herba, Schizonepetae Herba, Menthae Herba, Mume Fructus, Cimicifugae Rhizoma, and Amomi Cardamomi Fructus showed relatively significant (58-68%) inhibitory activity against PTP1B. Especially, the methylene chloride fraction of the methanol extract of Menthae Herba (81% inhibition at 30 ${\mu}g$/ml) showed more potent inhibitory activity against PTP1B than others.