DOI QR코드

DOI QR Code

Characterization of a Dual-Specificity Protein Phosphatase, Human DUSP28

인간유래의 dual-specificity protein phosphatase, DUSP28의 활성분석

  • Jeong, Dae-Gwin (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Song-Yi (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yun, Jeong-Hun (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Kim, Jae-Hoon (Faculty of Biotechnology, College of Applied Life Science, Jeju National University)
  • 정대균 (한국생명공학연구원 단백체의학연구센터) ;
  • 김송이 (한국생명공학연구원 단백체의학연구센터) ;
  • 윤정훈 (제주대학교 생명공학부) ;
  • 김재훈 (제주대학교 생명공학부)
  • Received : 2010.11.10
  • Accepted : 2010.12.07
  • Published : 2011.01.30

Abstract

Dual-specificity protein phosphatases (DUSPs) constitute a family of protein phosphatase characterized by the ability to dephosphorylate phospho-tyrosyl and phospho-seryl/threonyl residues. Most DUSPs are involved in regulation of cell survival and differentiation. In this study, a human dual-specificity protein phosphatase, DUSP28, was isolated from a human kidney cDNA. The recombinant protein was successfully produed in E.coli and showed sufficient phosphatase activity toward DiFMUP (6,8-difluoro-4-methylumbelliferyl phosphate). Various phosphatase inhibitors and divalent metals were tested for their effects on the DUSP28 phosphatase activity. As a result, $Zn^{2+}$ was found to strongly inhibit DUSP28 phosphatase activity, suggesting DUSP28 is involved in Zn-related signal transduction pathway. Furthermore, the DUSP28 protein preferred phospho-tyrosyl residues to phospho-threonyl residues, implying its physiological roles in the cellular process.

Dual-specificity protein phosphatase (DUSP)들은 인산화된 티로신 잔기와 인산화된 세린 또는 트레오닌 잔기를 탈인산화시키는 단백질 탈인산화효소 군을 이루고 있으며, 대부분의 DUSP들은 세포의 생존이나 분화에 관여하고 있다. 본 연구에서는 잘 알려지지 않은 인간 유래의 dual-specificity protein phosphatase인 DUSP28을 인간신장 cDNA에서 분리하였다. 대장균에서 생산된 재조합단백질은 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP)에 대하여 좋은 활성을 보였다. 다양한 저해제와 2가 금속이온들이 DUSP28의 활성에 미치는 영향을 조사하였다. 다른 DUSP들에서와는 다르게, $Zn^{2+}$은 DUSP28의 탈인산화활성을 강하게 억제하였다. 이러한 결과로부터 DUSP28이 Zn과 연관된 신호전달경로에 관여할 것으로 추정된다. 더욱이, DUSP28은 인산화된 티로신잔기를 더욱 선호하는 경향이 있는 것으로 나타났고, 이는 세포 내에서도 비슷한 작용을 할 것으로 예상된다.

Keywords

References

  1. Alonso, A., J. Sasin, N. Bottini, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, and T. Mustelin. 2004. Protein tyrosine phosphatases in the human genome. Cell 117, 699-711. https://doi.org/10.1016/j.cell.2004.05.018
  2. Arimura, Y. and J. Yagi. 2010. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci. Signal. 3, 11-18.
  3. Carlos, R. M., R. Pablo, T. Lydia, K. A. Teresa, and P. Rafael. A novel phosphatase family, structurally related to dual- specificity phosphatases, that displays unique amino Acid Sequence and Substrate Specificity. J. Mol. Biol. 374, 899-909.
  4. Cheng, H., Q. Gao, M. Jiang, Y. Ma, X. Ni, L. Guo, W. Jin, G. Cao, C. Ji, K. Ying, W. Xu, S. Gu, Y. Ma, Y. Xie, and Y. Mao. 2003. Molecular cloning and characterization of a novel human protein phosphatase, LMW-DSP3. Int. J. Biochem. Cell Biol. 35, 226-234. https://doi.org/10.1016/S1357-2725(02)00127-9
  5. Claiborn, C. S., T. Larson, and L. Sheppard. 2002. Testing the metals hypothesis in Spokane, Washington. Environ. Health Perspect 110, 547-552. https://doi.org/10.1289/ehp.02110s4547
  6. Farooq, A. and M. M. Zhou. 2004. Structure and regulation of MAPK phosphatases. Cellular Signal 16, 769-779. https://doi.org/10.1016/j.cellsig.2003.12.008
  7. Gordon, T., L. C. Chen, J. M. Fine, R. B. Schlesinger, W. Y. Su, T. A. Kimmel, and M. O. Amdur. 1992. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am. Ind. Hyg. Assoc. J. 53, 503-509. https://doi.org/10.1080/15298669291360030
  8. Kim, J. H., D. Y. Shin, M. H. Han, and M. U. Choi. 2001. Mutational and kinetic evaluation of conserved His-123 in dual specificity protein-tyrosine phosphatase vaccinia H1-related phosphatase: participation of Tyr-78 and Thr-73 residues in tuning the orientation of His-123. J. Biol. Chem. 276, 27568-27574. https://doi.org/10.1074/jbc.M010526200
  9. Kim, J. H., H. Cho, S. E. Ryu, and M. U. Choi. 2000. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by $Cu^{2+}$ ion. Arch. Biochem. Biophys. 382, 72-80. https://doi.org/10.1006/abbi.2000.1996
  10. Kim, S. J., D. G. Jeong, T. S. Yoon, J. H. Son, S. Kim Cho, S. E. Ryu, and J. H. Kim. 2007. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Proteins 66, 239-245.
  11. Kim, Y. M., W. Reed, W. Wu, P. A. Bromberg, L. M. Graves, and J. M. Samet. 2006. $Zn2^+-induced$ IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 290, 1028-1035. https://doi.org/10.1152/ajplung.00479.2005
  12. Kodavanti, U. P., M. C. Schladweiler, A. D. Ledbetter, R. Hauser, D. C. Christiani, J. M. Samet, J. McGee, J. H. Richards, and D. L. Costa. 2002. Pulmonary and systemic effects of zinc-containing emission particles in three rat strains: multiple exposure scenarios. Toxicol. Sci. 70, 73-85.
  13. Maret, W., C. Jacob, B. L. Vallee, and E. H. Fischer. 1999. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. U.S.A. 96, 1936-1940. https://doi.org/10.1073/pnas.96.5.1936
  14. Nakamura, K., H. Shima, M. Watanabe, T. Haneji, and K. Kikuchi. 1999. Molecular cloning and characterization of a novel dual-specificity protein phosphatase possibly involved in spermatogenesis. Biochem. J. 344, 41404-41413.
  15. Todd, J. L., K. G. Tanner, and J. M. Denu. 1999. Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J. Biol. Chem. 274, 13271-13280. https://doi.org/10.1074/jbc.274.19.13271
  16. Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205-215. https://doi.org/10.1016/S0955-0674(96)80067-6
  17. Wu, Q., Y. Li, S. Gu, N. Li, D. Zheng, D. Li, Z. Zheng, C. Ji, Y. Xie, and Y. Mao. 2004. Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Int. J. Biochem. Cell Biol. 36, 154-1553. https://doi.org/10.1016/j.biocel.2003.12.014
  18. Yu, M., F. Xiang, R. P. Beyer, F. M. Farin, T. K. Bammler, and M. T. Chin. 2010. Transcription Factor CHF1/Hey2 Regulates Specific Pathways in Serum Stimulated Primary Cardiac Myocytes: Implications for Cardiac Hypertrophy. Current Genomics 11, 287-296. https://doi.org/10.2174/138920210791233117
  19. Yuvaniyama, J., J. M. Denu, J. E. Dixon, and M. A. Saper. 1996. Crystal structure of the dual specificity protein phosphatase VHR. Science 272, 1328-1331. https://doi.org/10.1126/science.272.5266.1328

Cited by

  1. Autocrine DUSP28 signaling mediates pancreatic cancer malignancy via regulation of PDGF-A vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-13023-w