• Title/Summary/Keyword: protein modification

Search Result 550, Processing Time 0.03 seconds

Modification of Turnip yellow mosaic virus coat protein and its effect on virion assembly

  • Shin, Hyun-Il;Chae, Kwang-Hee;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.46 no.10
    • /
    • pp.495-500
    • /
    • 2013
  • Turnip yellow mosaic virus (TYMV) is a positive strand RNA virus. We have modified TYMV coat protein (CP) by inserting a c-Myc epitope peptide at the N- or C-terminus of the CP, and have examined its effect on assembly. We introduced the recombinant CP constructs into Nicotiana benthamiana leaves by agroinfiltration. Examination of the leaf extracts by agarose gel electrophoresis and Western blot analysis showed that the CP modified at the N-terminus produced a band co-migrating with wild-type virions. With C-terminal modification, however, the detected bands moved faster than the wild-type virions. To further examine the effect, TYMV constructs producing the modified CPs were prepared. With N-terminal modification, viral RNAs were protected from RNase A. In contrast, the viral RNAs were not protected with C-terminal modification. Overall, the results suggest that virion assembly and RNA packaging occur properly when the N-terminus of CP is modified, but not when the C-terminus is modified.

Post-Translational Modification of Proteins in Toxicological Research: Focus on Lysine Acylation

  • Lee, Sangkyu
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.

Chemical Modification of Yeast Farnesyl Protein Transferase Expressed in E. coli

  • Kim, Hyun-Kyung;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.529-534
    • /
    • 2006
  • Chemical modification of the S. cerevisiae farnesyl protein transferase (FPT) with CMC, phenylglyoxal and DEPC resulted in enzyme inactivation, depending upon the reagent concentration. The peptide substrate GST-PEP-I, a GST-fused undecapeptide mimicking the C-terminus of $p21^{Ki-ras}$, protected the enzyme against inactivation by CMC which is specific to either aspartate or glutamate, while the other substrate farnesyl pyrophosphate (FPP) showed protection against phenylglyoxal which is the specific modifier of arginine residues, dependent on the substrate concentrations. Neither of the two substrates protected the enzyme against histidine inactivation by DEPC. It is suggested that there is at least one aspartate or glutamate residue at the peptide substrate binding site, and that at least one arginine residue is located at the binding site of FPP. There also seems to be at least one histidine residue which is critical for enzymic activity and is exposed toward the bulk solution, excluded from the substrate binding sites.

Structural Identification of Modified Amino Acids on the Interface between EPO and Its Receptor from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis

  • Song, Kwang-Eun;Byeon, Jaehee;Moon, Dae-Bong;Kim, Hyong-Ha;Choi, Yoo-Joo;Suh, Jung-Keun
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.819-826
    • /
    • 2014
  • Protein modifications of recombinant pharmaceuticals have been observed both in vitro and in vivo. These modifications may result in lower efficacy, as well as bioavailability changes and antigenicity among the protein pharmaceuticals. Therefore, the contents of modification should be monitored for the quality and efficacy of protein pharmaceuticals. The interface of EPO and its receptor was visualized, and potential amino acids interacting on the interface were also listed. Two different types of modifications on the interface were identified in the preparation of rHu-EPO BRP. A UPLC/Q-TOF MS method was used to evaluate the modification at those variants. The modification of the oxidized variant was localized on the Met54 and the deamidated variants were localized on the Asn47 and Asn147. The extent of oxidation at Met54 was 3.0% and those of deamidation at Asn47 and Asn147 were 2.9% and 4.8%, respectively.

Detection of IgG Using Thiolated Protein G Modified SPR Sensor Chip (Thiolated protein G로 개질된 SPR 센서 칩을 이용한 IgG 검출)

  • Sin, Eun-Jung;Lee, Yeon-Kyung;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.434-438
    • /
    • 2011
  • A portable surface plasmon resonance(SPR) based immunosensor using thiolated protein G and protein G was developed for the detection of immunoglobulin G(IgG). The protein G has specific affinity with Fc fragment of IgG and was thiolated by 2-Iminothiolane for introduction of thiol groups. Anti-IgG, bovine serum albumin(BSA), and IgG have been sequently injected after surface modification of gold sensor chip with protein G and thiolated protein G. The output signal was increased with the injection of each protein and the actual signal was measured by subtracting signal of reference channel from signal of sample injected channel. The experimental results showed the higher detection capability of IgG using thiolated protein G compared with protein G. From these results, we can conclude that the current surface modification technique and the portable SPR sensor system can be applied to various immunosensors for diagnosis.

Chemical Modification of Transducin with Dansyl Chloride Hinders Its Binding to Light-activated Rhodopsin

  • Kosoy, Ana;Moller, Carolina;Perdomo, Deisy;Bubis, Jose
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2004
  • Transducin (T), the heterotrimeric guanine nucleotide binding protein in rod outer segments, serves as an intermediary between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase. Labeling of T with dansyl chloride (DnsCl) inhibited its light-dependent guanine nucleotide binding activity. Conversely, DnsCl had no effect on the functionality of rhodopsin. Approximately 2-3 mol of DnsCl were incorporated per mole of T. Since fluoroaluminate was capable of activating DnsCl-modified T, this lysine-specific labeling compound did not affect the guanine nucleotide-binding pocket of T. However, the labeling of T with DnsCl hindered its binding to photoexcited rhodopsin, as shown by sedimentation experiments. Additionally, rhodopsin completely protected against the DnsCl inactivation of T. These results demonstrated the existence of functional lysines on T that are located in the proximity of the interaction site with the photoreceptor protein.

Chemical Modification Studies of Yeast Farnesyl Protein Transferase

  • Sohn, Seung-Wan;Jun, Gyo;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.280-284
    • /
    • 1997
  • Phenylglyoxal diethyl pyrocarbonate (DEPC), and 1-cyclohexyl-3-[2-morpholinoethyl]-carbodiimide metho-p-toluenesulfonate (CMC) are modifying reagents specific for arginine, histidine, and aspartate or glutamate, respectively. They were found to inactivate S. cerevisiae farnesyl protein transferase (FPTase). The peptide substrate protected the enzyme against inactivation by CMC and the other substrate farnesyl pyrophosphate showed protection against inactivation by phenylglyoxal. while neither of the two substrates protected the enzyme against DEPC inactivation. These results suggest the presence of aspartate/glutamate, arginine and histidine residues at the active site of this enzyme.

  • PDF

Methylation by Protein Arginine Methyltransferase

  • Woo , Yun-Na;Cho, Eun-Jung;Hong , Sung-Youl;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.330.1-330.1
    • /
    • 2002
  • Arginine methylation is a common post-translation protein modification in eukaryotic cells. Protein-arginine N-methyltransferase transfer methyl groups from S-adenosyl-L-methionine to the guanidino group of arginine residues. However. The significant of this modification has been questionable. because it occurs rarely and is present at very low abundance. Recently, the discovery of two protein arginine methyltransferase, PRMT1 and CARM1, as cofactors required for responses to muclear Hormone receptors provided an indicationthat arginine methylationhave an important role in transcriptional regulation. (omitted)

  • PDF

Remodeling of host glycoproteins during bacterial infection

  • Kim, Yeolhoe;Ko, Jeong Yeon;Yang, Won Ho
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.541-544
    • /
    • 2021
  • Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.