• Title/Summary/Keyword: protein metabolism urea nitrogen

Search Result 63, Processing Time 0.022 seconds

Effect of Different Rumen-degradable Carbohydrates on Rumen Fermentation, Nitrogen Metabolism and Lactation Performance of Holstein Dairy Cows

  • Khezri, A.;Rezayazdi, K.;Mesgaran, M. Danesh;Moradi-Sharbabk, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2009
  • Four multiparous lactating Holstein cows fitted with rumen cannulae were fed diets varying in the amount and source of rumen-degradable carbohydrates (starch vs. sucrose) to examine their effects on rumen fermentation, nitrogen metabolism and lactation performance. A $4{\times}4$ Latin square with four diets and four periods of 28 days each was employed. Corn starch and sucrose were added to diets and corn starch was replaced with sucrose at 0 (0 S), 2.5 (2.5 S), 5.0 (5.0 S) 7.5% (7.5 S) of diet dry matter in a total mixed ration (TMR) containing 60% concentrate and 40% forage (DM basis). Replacing corn starch with sucrose did not affect (p>0.05) ruminal pH which averaged 6.41, but the ruminal pH for 7.5 S decreased more rapidly at 2 h after morning feeding compared with other treatments. Sucrose reduced ($p{\leq}0.05$) ruminal $NH_3-N$ concentration (13.90 vs. 17.09 mg/dl) but did not affect peptide-N concentration. There was no dietary effect on total volatile fatty acids (110.53 mmol/L) or the acetate to propionate ratio (2.72). No differences (p>0.05) in molar proportion of most of the individual VFA were found among diets, except for the molar proportion of butyrate that was increased ($p{\leq}0.05$) with the inclusion of sucrose. Total branched chain volatile fatty acids tended to increase ($p{\geq}0.051$) for the control treatment (0 S) compared with the 7.5 S treatment. Dry matter intake, body weight changes and digestibility of DM, OM, CP, NDF and ADF were not affected by treatments. Sucrose inclusion in the total mixed ration did not affect milk yield, but increased milk fat and total solid percentage ($p{\leq}0.05$). Sucrose tended ($p{\geq}0.063$) to increase milk protein percentage (3.28 vs. 3.05) and reduced ($p{\leq}0.05$) milk urea nitrogen concentration (12.75 vs. 15.48 mg/dl), suggesting a more efficient utilization of the rapidly available nitrogen components in the diet and hence improving nitrogen metabolism in the rumen.

Net Portal Fluxes of Nitrogen Metabolites in Holstein Steers Fed Diets Containing Different Dietary Ratios of Whole-crop Corn Silage and Alfalfa Hay

  • EL-Sabagh, M.;Imoto, S.;Yukizane, K.;Yokotani, A.;Sugino, T.;Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.371-377
    • /
    • 2009
  • The objectives of the present study were to investigate the effects of different dietary ratios of whole-crop corn silage and alfalfa hay on nitrogen (N) digestion, duodenal flow and metabolism across the portal-drained viscera (PDV) of growing beef steers, and to elucidate their relationships. Four steers (236${\pm}$7 kg BW) fitted with duodenal cannulae and chronic indwelling catheters into the portal and mesenteric veins and abdominal aorta were used in a 4${\times}$4 Latin square design. Animals were fed (at 12-h intervals) the 4 diets consisting of whole-crop corn silage (C) and alfalfa hay (A) in 80:20 (C8A2), 60:40 (C6A4), 40:60 (C4A6) and 20:80 (C2A8) ratios of which dietary crude protein (CP) was 10.5, 12.0, 13.5 and 15.0% of dry matter (DM), respectively. Feeding level was restricted to 95% of ad libitum intake to measure N digestion, blood flow and net flux of N across the PDV. Digestibility of DM and neutral detergent fiber and digestible energy intake linearly increased as the ratio of alfalfa hay increased. The N intake, duodenal flow and intestinal disappearance increased linearly with increasing alfalfa hay. Arterial and portal concentrations of ${\alpha}$-amino N showed a quadratic response to increasing levels of alfalfa hay and were the highest in steers fed the C6A4 diet. The net PDV release of ${\alpha}$-amino N and ammonia N increased linearly with increasing alfalfa hay, but urea N uptake by PDV did not differ among diets. As a percentage of apparently digested N in the total gut, net PDV release of ${\alpha}$-amino N linearly decreased from 66 to 48% with increasing alfalfa hay. Conversely, net PDV recovery of ${\alpha}$-amino N to intestinal N disappearance varied with increasing alfalfa hay accounting for 49, 50, 58 and 61% on C8A2, C6A4, C4A6 and C2A8 diets, respectively. Net PDV uptake of urea N, relative to apparently digested N, linearly decreased from 81 to 25% as alfalfa hay increased from 20 to 80% of DM intake. Considering PDV uptake of urea N, microbial efficiency and conversion of total tract digested N to PDV ${\alpha}$-amino N net supply, a diet consisting of 80% whole-crop corn silage and 20% alfalfa hay (10.5% CP) was the best, while considering the quantities of intestinal N disappearance and ${\alpha}$-amino N absorption, a diet of 20% whole-crop corn silage and 80% alfalfa hay (15% CP) would be preferred. The proportion of ${\alpha}$-amino N recovered by PDV relative to the intestinal N disappearance may vary with energy intake level of mixed forage diets.

Anti-Obesity Effects of Menthae Herba Hydrosol on High-Fat Diet Induced Obese Mice (고지방 식이로 유도된 비만 생쥐에서 박하 Hydrosol의 항비만 효과)

  • Soo-Min Choi;So-Young Kim;Young-Jun Kim;Chang-Hoon Woo;Mi-Ryeo Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.33-46
    • /
    • 2023
  • Objectives We investigated anti-obesity effects of Menthae Herba hydrosol in obese mice. Methods Animals were divided into four groups, and treatments were performed for 7 weeks. After the treatment, serum lipid profiles, weight and pathological morphology in liver, kidney, adipose tissue were measured. Also, hepatic protein and gene expression levels of lipid metabolism-related factors were analyzed. Results Body weight was decreased in P3% group. In P1% (group fed high-fat diet and 1% Menthae Herba hydrosol) and P3% (group fed high-fat diet and 3% Menthae Herba hydrosol) group, weight of white adipose tissue, serum levels of triglyceride and blood urea nitrogen were decreased, and weight of muscle was increased. Also, liver, kidney and epididymal adipocyte size were reduced in P1% and P3% group. Adenosine monophosphate-activated protein kinase was increased and sterol regulatory element binding protein-1c (SREBP-1c) was decreased in P3% group. mPeroxisome proliferator-activator receptor-γ, mMonocyte chemotactic protein-1 were decreased in P1% and P3% group. In P3% group, mSREBP-1c was decreased and mCarnitine palmitoyl transferase-1 was increased. And mUncoupling protein 1 in brown adipose tissue was increased. Conclusions These results suggest that Menthae Herba hydrosol has a worthy effect on anti-obesity.

Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch

  • Franco, Marcia de Oliveira;Detmann, Edenio;Filho, Sebastiao de Campos Valadares;Batista, Erick Darlisson;Rufino, Luana Marta de Almeida;Barbosa, Marcilia Medrado;Lopes, Alexandre Ribeiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.797-803
    • /
    • 2017
  • Objective: Effects of nitrogen supplementation associated with different levels of starch on voluntary intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage (Brachiaria decumbens hay, 7.4% crude protein, CP) were evaluated using ruminal and abomasal cannulated steers. Methods: Five European${\times}$Zebu young bulls (186 kg body weight, BW) were distributed according to a $5{\times}5$ Latin square. The following treatments were evaluated: control, supplementation with 300 g CP/d (0:1), supplementation with 300 g starch/d and 300 g CP/d (1:1), supplementation with 600 g starch/d and 300 g CP/d (2:1), and supplementation with 900 g starch/d and 300 g CP/d (3:1). A mixture of nitrogenous compounds provided 1/3 from true protein (casein) and 2/3 from non-protein nitrogen (mixture of urea and ammonium sulphate, 9:1) was used as the nitrogen supplement. In order to supply energy a unique source of corn starch was used. Results: Supplements increased (p<0.05) dry matter intake, but did not affect (p>0.05) forage intake. There was a cubic effect (p<0.05) of starch on voluntary intake. This was attributed to the highest forage intake (g/kg BW) when using the 2:1 starch:CP ratio. Supplements increased (p<0.05) organic matter (OM) digestibility, but did not affect (p>0.05) neutral detergent fibre corrected for ash and protein (NDFap) digestibility. There was a positive linear effect (p<0.05) of the amount of starch supplemented on OM digestibility. Total NDFap digestibility was not affected (p>0.05) by the amount of supplemental starch. Ruminal ammonia nitrogen concentrations were higher (p<0.05) in supplemented animals, however, a negative linear effect (p<0.05) of amount of starch was observed. Supplements increased (p<0.05) the nitrogen balance (NB) and efficiency of nitrogen utilization. These effects were attributed to increased body anabolism, supported by higher (p<0.05) serum concentration of insulin-like growth factor 1. Increasing the amount of starch tended (p<0.06) to linearly increase the NB. In spite of this, there was a highest NB value for the 2:1 starch:CP ratio amongst the treatments with supplementation. Conclusion: Nitrogen supplementation in cattle fed low-quality tropical forage increases nitrogen retention in the animal's body. An additional supply of starch increases nitrogen retention by increasing energy availability for both rumen and animal metabolism.

Effects of Black Sugar Supplementation on Dry Matter Intake, Milk Yield, and Milk Composition in Holstein Dairy Cow

  • Seng, Tongheng;Lee, Sang Moo;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.213-218
    • /
    • 2013
  • This study was conducted to investigate the effects of supplementing additional sucrose, in the form of black sugar (BS), into the diet of Holstein dairy cows on dry matter intake (DMI), milk yield, and milk composition. Eight Holstein dairy cows ($741{\pm}65.8kg$ body weight) were divided into two groups, including the control and BS groups. Animals in the control group were offered a total mixed ration (TMR) ad libitum, and the BS group was offered TMR with 300 g of BS/head/d. After two weeks of adaptation period, the animal performance, including DMI, milk yield and milk composition, was measured. Cows supplemented with BS appeared to consume more feed than that by the controls (i.e., 17.08 and 18.28 kg/d for the control and BS groups, respectively). However, there were no significant differences between treatments. Milk yield or milk composition, such as milk fat, milk protein, lactose, solids-non-fat, total solids and pH, did not differ between treatments. However, there was a significant difference (p<0.05) in the concentration of milk urea nitrogen (MUN). The MUN concentration of the BS group was approximately 15% lower than that of the control group (i.e., 18.75 vs. 16.05 mg/dL for the control and BS groups, respectively), which suggests improved nitrogen metabolism in the animals. The somatic cell count was numerically lower in the cows of the BS group compared to those in the control group. However, a significant difference was not noted due to the substantial amount of variation among cows. In terms of the trace mineral composition for milk, the concentration of Cu from BS animals was higher (p<0.05) than that of the control animals. In summary, supplementing the diets of dairy cows with BS marginally affected animal performance and improved nitrogen metabolism. The level of supplementation and other factors, such as animal variation were discussed.

Effects of Corn and Soybean Meal Types on Rumen Fermentation, Nitrogen Metabolism and Productivity in Dairy Cows

  • Shen, J.S.;Song, L.J.;Sun, H.Z.;Wang, B.;Chai, Z.;Chacher, B.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.351-359
    • /
    • 2015
  • Twelve multiparous Holstein dairy cows in mid-lactation were selected for a replicated $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement to investigate the effects of corn and soybean meal (SBM) types on rumen fermentation, N metabolism and lactation performance in dairy cows. Two types of corn (dry ground [DGC] and steam-flaked corn [SFC]) and two types of SBM (solvent-extracted and heat-treated SBM) with different ruminal degradation rates and extents were used to formulate four diets with the same basal ingredients. Each period lasted for 21 days, including 14 d for adaptation and 7 d for sample collection. Cows receiving SFC had a lower dry matter (DM) and total N intake than those fed DGC. However, the milk yield and milk protein yield were not influenced by the corn type, resulting in higher feed and N utilization efficiency in SFC-fed cows than those receiving DGC. Ruminal acetate concentrations was greater and total volatile fatty acids concentrations tended to be greater for cows receiving DGC relative to cows fed SFC, but milk fat content was not influenced by corn type. The SFC-fed cows had lower ruminal ammonia-N, less urea N in their blood and milk, and lower fecal N excretion than those on DGC. Compared with solvent-extracted SBM-fed cows, cows receiving heat-treated SBM had lower microbial protein yield in the rumen, but similar total tract apparent nutrient digestibility, N metabolism measurements, and productivity. Excessive supply of metabolizable protein in all diets may have caused the lack of difference in lactation performance between SBM types. Results of the present study indicated that increasing the energy degradability in the rumen could improve feed efficiency, and reduce environmental pollution.

Effects of Prepartum Dietary Carbohydrate Source on Metabolism and Performance of Primiparous Holstein Cows during the Periparturient Period

  • Mirzaei Alamouti, H.R.;Amanlou, H.;Rezayazdi, K.;Towhidi, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1513-1520
    • /
    • 2009
  • Forty-six Holstein heifers were used in a completely randomized design and assigned to 1 of 2 treatments to evaluate the effects of 2 diets varying in ruminal fermentable carbohydrate sources, namely ground corn (GC) and rolled wheat (RW), on metabolism and performance of primiparous cows in the periparturient period. The heifers were fed diets as a total mixed ration (TMR) with similar energy and crude protein content including i) 18.57% GC, or ii) 18.57% RW from -24.13${\pm}$7.73 d relative to expected calving until calving. After calving, all animals received the same lactation diet until 28 d. Animals were group fed from the beginning of the study to -7 d relative to expected calving, fed individually from d -7 to 7 days in milk (DIM), and again group fed to 28 DIM. The pre-partum diets affected (p<0.05) dry matter intake (DMI), energy intake, energy balance (EB) and urinary pH during the last week pre-partum. There was no effect of pre-partum carbohydrate source on overall plasma concentration of glucose, nonesterified fatty acid (NEFA), $\beta$-hydroxybutyrate (BHBA), albumin, triglyceride (TG), cholesterol, aspartate aminotransferase (AST), insulin, and cortisol during the periparturient period. Cows fed the RW diet during the pre-partum period had greater calcium for the first week (p<0.05) and during 28 d (p = 0.08) of lactation compared with heifers fed the GC diet. Primiparous cows fed the RW diet produced greater milk protein content and yield (p<0.05). Primiparous cows fed the RW diet had lower milk urea nitrogen (MUN) and somatic cell count (SCC) than cows fed the GC diet (p<0.05). The results of this study show that feeding pre-partum diets with a rapidly fermentable source of starch but low energy content can improve animal metabolism and performance and smooth the transition of primiparous Holstein cows from gestation to lactation.

Effects of different levels of dietary crude protein on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows

  • Hongjun Kim;Xinghao Jin;Cheonsoo Kim;Niru Pan;Yoo Yong Kim
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1263-1273
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effects of crude protein (CP) levels on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows. Methods: Seventy-two multiparous sows (Yorkshire×Landrace) of average body weight (BW), backfat thickness, and parity were assigned to one of six treatments with 10 or 11 sows per treatment in a completely randomized design. Experimental diets with different CP levels were as follows: i) CP11, corn-soybean-based diet containing 11% CP; ii) CP12, corn-soybean-based diet containing 12% CP; iii) CP13, corn-soybean-based diet containing 13% CP; iv) CP14, corn-soybean-based diet containing 14% CP; v) CP15, corn-soybean-based diet containing 15% CP; and vi) CP16: corn-soybean-based diet containing 16% CP. Results: There was no significant difference in the performance of sow or piglet growth when sows were fed different dietary protein levels. Milk fat (linear, p = 0.05) and total solids (linear, p = 0.04) decreased as dietary CP levels increased. Increasing dietary CP levels in the gestation diet caused a significant increase in creatinine at days 35 and 110 of gestation (linear, p = 0.01; linear, p = 0.01). The total protein in sows also increased as dietary CP levels increased during the gestation period and 24 hours postpartum (linear, p = 0.01; linear, p = 0.01). During the whole experimental period, an increase in urea in sows was observed when sows were fed increasing levels of dietary CP (linear, p = 0.01), and increasing blood urea nitrogen (BUN) concentrations were observed as well. In the blood parameters of piglets, there were linear improvements in creatinine (linear, p = 0.01), total protein (linear, p = 0.01), urea (linear, p = 0.01), and BUN (linear, p = 0.01) with increasing levels of dietary CP as measured 24 hours postpartum. At two measurement points (days 35 and 110) of gestation, the odor gas concentration, including amine, ammonia, and hydrogen sulfide, increased linearly when sows fed diets with increasing levels of dietary CP (linear, p = 0.01). Moreover, as dietary CP levels increased to 16%, the odor gas concentration was increased with a quadratic response (quadratic, p = 0.01). Conclusion: Reducing dietary CP levels from 16% to 11% in a gestating diet did not exert detrimental effects on sow body condition or piglet performance. Moreover, a low protein diet (11% CP) may improve dietary protein utilization and metabolism to reduce odor gas emissions in manure and urine in gestating sows.

Supplementation of guanidinoacetic acid and rumen-protected methionine increased growth performance and meat quality of Tan lambs

  • Zhang, Jian Hao;Li, Hai Hai;Zhang, Gui Jie;Zhang, Ying Hui;Liu, Bo;Huang, Shuai;Guyader, Jessie;Zhong, Rong Zhen
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1556-1565
    • /
    • 2022
  • Objective: Tan lambs (n = 36, 3 mo old, 19.1±0.53 kg) were used to assess effects of dietary guanidinoacetic acid (GAA) and rumen-protected methionine (RPM) on growth performance, carcass traits, meat quality, and serum parameters. Methods: Lambs were randomly assigned to three treatment groups, with 6 pens per group and 2 lambs per pen. Dietary treatments were: basal diet alone (I); basal diet supplemented with 0.08% GAA+0.06% RPM (II); and basal diet supplemented with 0.08% GAA+0.08% RPM (III). Diets were provided three times a day for 90 d. Intake per pen was recorded daily and individual lamb body weight (BW) was measured monthly. Carcass traits were measured after slaughter and meat quality at the end of the experiment, blood samples were taken on a subgroup of lambs for analysis of indicators mostly related to protein metabolism. Results: Final BW and average daily gain for the first and second month, and for the entire experiment were greater in Treatment II compared to Treatment I (p<0.05), whereas feed to gain ratio was lower (p<0.05). Treatment II had the optimal dressing percentage and net meat weight proportion, as well as crude protein and intramuscular fat concentrations in muscles. Treatment II improved meat quality, as indicated by the greater water holding capacity, pH after 45 min and 48 h, and lower shear force and cooking loss. Dietary supplementation of GAA and RPM also increased the meat color a* and b* values at 24 h. Finally, Treatment II increased total protein, and serum concentrations of albumin and creatinine, but decreased serum urea nitrogen concentrations, indicating improved protein efficiency. Conclusion: In this study, 0.08% GAA+0.06% RPM supplementation improved growth performance and meat quality of Tan lambs.

Effect of Diets Containing Ground Charcoal Powder, Wood Vinegar and Fermented Acetic Acid on the Protein and Energy Metabolism in White Leghorn Strain Layer (백색 산란계의 단백질 및 에너지 대사에 미치는 성형 목탄가루, 목초액 및 양조식초 첨가사료의 영향)

  • 고태송;최윤석;김동희
    • Korean Journal of Poultry Science
    • /
    • v.18 no.2
    • /
    • pp.85-95
    • /
    • 1991
  • The investigation concerned an effect of the ground charcoal powder and organic acids on the digestibilities of protein and energy or the contents of uric acid, ammonia, creatine and urea in excreta of 113 week-old White Leghorn strain layers. Birds were fed basal (control) diet composed of mainly corn-soybean meal during a week of previous feeding and subsequent experimental diets during 12 weeks of experimental feeding . The experimental diets were the control diet(CON). diet(CPD) substituted 0.5% of the ground charcoal powder with the defatted rice bran of the CON, diet(PWV) added 0.1mM(based on the acetic acid) wood vinegar in the CPD and diet(PFA) added 0.1mM (based on the acetic acid) fermented acetic acid in the CPD. Birds fed CPD excreted significantly(P<0.05) more fecal nitrogen(FN) and lower urinary nitrogen (UN) than those of birds fed CON. Digestibility of protein was lower significantly (P< 0.05) in CPB-fed bird than in bird fed CON. while birds fed CON. PWV and PFA showed similar values. Also urinary nitrogen per nitrogen intake (UN/NI) or absorbed nitrogen (UN/AN) was significantly (P<0.05) lower in birds fed CPD compared with those in birds fed CON. And birds fed PWV tended to increase UN/NI and UN/AN, while PFA-fed birds excreted significantly (P<0.05) higher UN/Nl and UN/Ah than those of birds fed CPD diet. The uric acid nitrogen (UAN) per nitrogen intake (UAN/NI) or absorbed nitrogen (UAN/AN) were lower significantly(P<0.05) in CPD-fed birds and were tended to decrease in birds fed PWV compared with those in birds fed CON and PFA The ammoniacal nitrogen(AMN) per nitrogen intake (AMN/NI) or absorbed nitrogen (AMN/NI) was tended to increase in birds fed experimental diets and was increased significantly(P<0.05) in birds fed PFA compared with those of birds fed CON. The excretion of creatine and urea nitrogen per nitrogen intake or absorbed nitrogen was shown similar values among birds fed experimental diets Digestibility of energy (DE/GE) was not shown any significant effect of experimental diet and were in the range of 80~84%. But metabolizability (ME/GE or MEn/GE) was increased in birds fed CPD and PWV and was decreased in birds fed PFA compared with those in birds fed CON. Although birds fed PWV showed significantly(P<0.05) higher ME/GE than bird fed PFA, the MEn/GE were higher significantly (P<0.05) in birds fed CON and CPD compared with that in birds fed PFA. Fecal energy affects 10~23% in the change of metabolizability though significant effect of fecal energy on the metabolizability were not found. But the effect of urinary energy on the metabolizability of diet was lowered as 2.3~3, 0% and the effect of experimental diets on the metabolizability of diets was due to change of urinary energy which also was originated from the change of uric acid energy.

  • PDF