• Title/Summary/Keyword: protein kinase isozyme

Search Result 18, Processing Time 0.021 seconds

Regulation of Phosphoinositide-specific Phospholipase C-$\gamma$ Isozyme

  • Bae, Yun-Soo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.17-17
    • /
    • 1998
  • Although the activation mechanism of PLC-${\gamma}$ isozyme by protein tyrosine kinase (PTK) is well established, several lines of evidence indicate that PLC-${\gamma}$ isozymes can be activated directly by several lipid-derived second messengers In the absence of tyrosine phosphorylation.(omitted)

  • PDF

Protein Kinase C (PKC) in Cellular Signalling System: Translocation of Six Protein Kinase C Isozymes in Human Prostate Adenocarcinoma PC-3 Cell Line (세포신호계에 있어서 Protein Kinase C: 사람의 전입선 adenocarcinoma PC-3 세포내의 여섯개의 Protein kinase C 동립효소의 translocation)

  • Park, Won-Chul;Ahn, Chang-Ho
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.439-451
    • /
    • 1993
  • Protein kinase C isozymes in a human prostate adenocarcinoma PC-3 cell line were characterized. Immunoreactive bands and immunocytochemical stains were obsenred in PC-3 cells with antibodies raised against protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$, and ζ types, respectively. Protein kinase C ${\alpha}$ corresponded to a immunoreactive band at a molecular weight of 80,000-dalton, whereas molecular weights of other immunoreactive isozvmes of protein kinase C were detected at 68,000-dalton. Protein kinHse C $\delta$ and ζ antibodies detected additional bands at 55,000-dalton and 80,000-dalton, respectively Immunocvtochemical study confirmed the results of the immunoblotting experiments qualitatively: all six protein kinase C isozymes were detected in the cytoplasm of PC-3 cells. Translocation of protein kinase C in PC-3 cells were also examined with phorbol 12-myristate 13-acetate (PMA), bryostatin 2, diolein, and 1-oleoyl-2-acetyl glycerol (OAG). Differential reactions of protein kinase C isozvmes to these activators were obsenred. When PC-3 cells were treated with 10mM bryostatin 2, protein kinase C isozyme u was translocated into the nucleus, whereas s type was translocated into the plasma membrane and the nucleus. Protein kinase C ${\alpha}$ and ζ types were translocated into the nucleus following the treatment with 101M diolein, whereas protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, and $\varepsilon$ types were translocated into the nucleus by the treatment with 10mM OAG. Protein kinase C ${\alpha}$ and $\varepsilon$ types were translocated into the nucleus in the presence of 100nM PMA. Protein kinase C $\delta$ type was translocated to the nuclear membrane by these activators, however, only PMA-induced translocation was inhibited by protein kinase C inhibitor, 1-(5-isoquinolinesulfonyll-2-methvlpiperazine dihvdrochloride (H7) . H7 inhibited translocation of protein kinase C ${\alpha}$ type induced by PMA, ${\beta}$ type by OAG and s type by PMA and OAG, whereas it did not affect translocations induced by bryostatin and diolein, respectively. These results suggest that there exist six isoformes of protein kinase C (${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$ and ζ types) in PC-3 cells and that each of these isozvmes distinctivelv reacts to bryostatin, diolein, OAG and PMA, in part due to an altered molecular size and conceivably discrete binding site(s).

  • PDF

Phospholipase C isozyme들과 조절물질 선별체계

  • 민도식;이영한;서판길;류성호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.63-63
    • /
    • 1993
  • Phospoinositide-specific phospholipase C (PLC)는 세포막의 phosphoinositide를 분해하여 inositol phosphates와 diacylglycerol을 전달하는데 핵심적인 효소이다. PLC는 분자량과 1차구조의 비교에 의하여 type (PLC-$\beta$, ${\gamma}$, $\delta$)로 구분되며, 각 type마다 2-4종의 subtype이 존재하고 PLC isozyme들에 대한 현재가지의 각종 신호 전달 및 조절에 대한 연구를 종합하면: (1) PLC-$\beta$ type은 G-protein과 연결되어 신호를 전달받고, (2) PLC-${\gamma}$ type은growth factor receptor tyrosine kinase에 의하여 인산화 되어 활성화됨으로, 세포의 성장 신호를 전달하며. (3) PLC-$\delta$ type에 대한 신호 전달이나 조절은 밝혀지지 않고 있다.

  • PDF

Translocation of Protein Kinase C Isozymes in the Breast Cancer Cell Line (유방 암세포에서 Protein Kinase C 동위효소의 전위)

  • Won Chul Choi;Joo Young Son;Seok Jin Seo
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.638-647
    • /
    • 1998
  • Protein Kinase C (PKC) activators, phorbol 12-myristate 13-acetate (PMA), bryostatin, and dioctanoyl glycerol (DiC8), induce translocation of PKC isozymes from cytoplasm to plasma membrane or into nucleus. The activated PKC negatively modulates growth of human breast cancer cells. Antiproliferative effect and translocation of PKC were investigated in MCF-7 cells. The translocation of activated PKC isozymes by PMA, bryostatin and DiC8 was occurred at the various different regions in MCF-7 cell. PKC $\alpha$ and $\beta$ could be translocated to the nucleus or the nuclear mem-brane, and PKC $\delta$and $\varepsilon$ to cell membrane by PMA while DiC8 and bryostatin induced the translocation of PKC $\alpha$ and $\beta$ to the nucleus or plasma membrane, respectively. In the antiproliferative effect of PKC activators, PMA ($IC_{50}$/ values of 1.2$\pm$0.3nM) and DiC8 ($IC_{50}$/ values of 5.0$\pm$1.1$\mu$M) inhibited the cell growth. Bryostatin also inhibited the cell growth but to a much less degree than one obser-ved with PMA : 16% growth reduction by 100nM bryostatin. However, PMA treated with bryostatin induced gro-wth inhibition, but PMA with DiC8 at 10$\mu$M was not effective. These results suggest that each PKC isozyme is tran-slocated to various specific sites, and that especially, PKC $\alpha$ isozyme plays an important role in control of antiprolife-raive function of cell growth.

  • PDF

Effect of Ethanol on the PKC Isozyme Activities in B103 Neuroblastoma Cells (에탄올이 신경아세포종 B103세포의 Protein Kinase C Isozyme 활성에 미치는 영향)

  • 조효정;정영진;진승하;오우균;김상원;강은정;박진규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.262-270
    • /
    • 2004
  • It is well known that long-term heavy ethanol intake causes alcoholic dementia, cerebellar degeneracy or Wernicke-Korsakoff syndrome and aggravates the conditions of many other neuro-psychotic disorders. Recently it is indicated that protein kinase C (PKC) plays an important role in the action of ethanol and in the neuro-adaptational mechanisms under chronic ethanol exposure. In order to investigate the effect of ethanol on PKC isoforms levels within the range of not showing any cytotoxicity, B103 neuroblastoma cell line trans-formed from murine central nervous system was employed and western blot analysis was carried out by using PKC isoform-specific antibodies. The changes of PKC-$\alpha$, ${\gamma}$, $\varepsilon$ and ζ level in the range of ethanol concentration 50∼200 mM were examined at the exposure time 1, 2, 8, 18 and 24 hrs in both cytosolic and membrane fraction. A typical ethanol concentration inducing the PKC isozymes was 100 mM, and the transforming time ranges of PKC isozymes could be considered as two different parts to each PKC isoform such as initial (0∼2 hrs) and prolonged (8∼24 hrs) stages. PKC-${\gamma}$ and PKC-$\varepsilon$ were clearly induced during the prolonged stages in cytosol at 18 hrs, and membrane fraction at 8 hrs and 18 hrs, respectively. On the other hand the PKC-$\alpha$ and PKC-ζ isozymes were largely induced in the prolonged stages at 18 hrs and 24 hrs, where the PKC-$\alpha$ isozyme was induced in both cytosol and membrane fractions at 200 mM ethanol concentration while the PKC-ζ isozyme was induced only in the membrane fractions at 100,200 mM. At 200 mM ethanol concentration of 24 hrs incubation in the prolonged stage, the PKC-$\alpha$ was maximally induced by 150% of the control values whereas the PKC-${\gamma}$ was significantly decreased to 47% of the control values. These results suggest that 100∼200 mM ethanol may modulate the signal transduction and neurotransmitter release in the central nervous system through the regulation of PKC isozymes, and the action of these isoforms may act differently each other in the cell.

Molecular Mechanisms of Protein Kinase C-induced Apoptosis in Prostate Cancer Cells

  • Gonzalez-Guerrico, Anatilde M.;Meshki, John;Xiao, Liqing;Benavides, Fernando;Conti, Claudio J.;Kazanietz, Marcelo G.
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.639-645
    • /
    • 2005
  • Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. $PKC{\delta}$, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of $PKC{\delta}$ totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical $PKC{\alpha}$ promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to $PKC{\varepsilon}$, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. $PKC{\delta}$ stimulates the release of $TNF{\alpha}$ from the plasma membrane, and blockade of $TNF{\alpha}$ secretion or $TNF{\alpha}$ receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

The Facile and Efficient Synthesis of 8-Chloroadenosine $3^I,5^I$-cyclic monophosphate by phosphorylative cyclization of 8-chloroadenosine and its characterization by$^1 H and 13^C$ NMR spectroscopy

  • Woo, Nam-Tae;Jin, Sun-Yong;Cho, Dae-Jin;Kim, Nam-Sun;Bae, Eun-Hyung;Jung, Jee-Hyung;Ham, Won-Hun;Jung, Young-Hoon
    • Archives of Pharmacal Research
    • /
    • v.20 no.2
    • /
    • pp.176-179
    • /
    • 1997
  • Purine nucleosides were chlorinated by the reaction of acyl chloride in DMF with MCPBA under mild conditions with moderate yields. And, satisfactory method for the synthesis of ribonucleoside-$3^{I},5^{I}$-cyclic phosphates and its characterization by$^{1}H$ and $^{13}C$ nmr spectroscopy is described.

  • PDF

Bitter Melon (Momordica charantia) Extract Enhances Exercise Capacity in Mouse Model (여주(Momordica charantia) 추출물이 생쥐의 지구력 운동수행능력 향상 효과에 미치는 영향)

  • Kim, Inbo;Park, Choon-Ho;Jung, Hoe-Yune;Jeong, Juseong;Hong, Hwan-Ung;Kim, Jong Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.506-512
    • /
    • 2016
  • Bitter melon (Momordica charantia) is used in traditional herbal medicine in many Asian countries for the treatment of several diseases such as diabetes, eczema, night blindness, psoriasis, and rheumatism. Especially, most reports concerning the biological activities of bitter melon have focused on its effects on diabetes and hyperglycemia. Also, bitter melon is regarded as a longevity food, suggesting that it has several beneficial effects on anti-aging and the maintenance of a healthy state. Thus, we investigated whether bitter melon could increase the capacity of exercise in this study. Interestingly, bitter melon fruit extract activated AMP-activated protein kinase (AMPK), which is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. In addition, bitter melon extract increased the expression of enzymes involved in fatty acid oxidation such as mitochondrial uncoupling protein 3 (UCP3), carnitine palmitoyl transferase 1b (CPT1b), and pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4). Moreover, exercise tolerance was much more enhanced in bitter melon treated animals compared to the non-treated control group. These results suggest that bitter melon is a promising candidate for the development of functional foods beneficial for physical strength and the enhancement of exercise capacity.

Development of screening systems for modulators on phospholipase-mediated signal transduction

  • Lee, Young-Han-;Min, Do-Sik;Kim, Jae-Ho-;Suh, Pann-Ghill;Ryu, Sung-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.186-186
    • /
    • 1994
  • Many agonists have been known to activate the hydrolysis of membrane phospholipids through the bindings with corresponding receptors on the various cells. Diacylglycerol and inositol 1,4,5-trisphosphate(IP3) generated by the action of phosphoinositide-specific phospholipase C (PI-PLC) are well known second messengers for the activation of protein kinase C and the mobilization of Ca2+ in many cells. Three types of PI-PLC isozyme (${\alpha}$,${\gamma}$, and $\delta$) and several subtrpes for each type have been identified from mammalian sources by purification of enzymes and cloning of their cDNAs. Each type PI-PLC isozyme is coupled to different receptors and mediators, for example, ${\beta}$-types are coupled to the seven-transmembrane-receptors via Gq family of G-proteins and ${\beta}$-types directly to the receptor tyrosine kinases. Specific modulators for the signaling pathway through each type of PI-PLC should be very useful as potential potential candidates for lend substances in developing novel drugs. To establish the sensitive and convenient screening systems for searching modulators on PI-PLC mediated signaling, two kinds of approaches have been tried. (1) Establishment of in vitro assay condition for each type of PI-PLC isozyme: Overexpression by using vaccinia virus and purification of each isozyme was carried out for the preparation of large amounts of enaymes. Optimum and sensitive assay condition for the measurements of PI-ELC activities were established. (2) Development of the cell lines in which each type of PI-PLC is permanently overexpressed: A fibroblast cell line (3T3${\gamma}$1-7) in which PI-PLC-${\gamma}$1 was overexpressed by using pZip-neo expression vector was developed and used for the measurement of PDGF-induced IP3 formation. The responses for IP3 formed in 3T3${\gamma}$1-7 cells by the treatment of PDGF is 8 times more sensitive than those in control cells. 3T3${\gamma}$l-7 cell is useful for the screening of the inhibitors on the PDGF-induced cellular responses from large number of samples in a small volume(50 ${\mu}$l) and short time(5-15 min). Using these systems, we screened hundreds of herb-extracts for the inhibition of PDGF-induced IP3 formation and selected several extracts that showed the inhibition as the candidates for isolation and characterization of active substances. The determination of the acting point of selected extracts or fractions in the PDGF signaling pathway has been analyzing.

  • PDF