• Title/Summary/Keyword: protein function prediction

Search Result 91, Processing Time 0.027 seconds

Prediction of Protein Secondary Structure Content Using Amino Acid Composition and Evolutionary Information

  • Lee, So-Young;Lee, Byung-Chul;Kim, Dong-Sup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • There have been many attempts to predict the secondary structure content of a protein from its primary sequence, which serves as the first step in a series of bioinformatics processes to gain knowledge of the structure and function of a protein. Most of them assumed that prediction relying on the information of the amino acid composition of a protein can be successful. Several approaches expanded the amount of information by including the pair amino acid composition of two adjacent residues. Recent methods achieved a remarkable improvement in prediction accuracy by using this expanded composition information. The overall average errors of two successful methods were 6.1% and 3.4%. This work was motivated by the observation that evolutionarily related proteins share the similar structure. After manipulating the values of the frequency matrix obtained by running PSI-BLAST, inputs of an artificial neural network were constructed by taking the ratio of the amino acid composition of the evolutionarily related proteins with a query protein to the background probability. Although we did not utilize the expanded composition information of amino acid pairs, we obtained the comparable accuracy, with the overall average error being 3.6%.

  • PDF

A Protein Sequence Prediction Method by Mining Sequence Data (서열 데이타마이닝을 통한 단백질 서열 예측기법)

  • Cho, Sun-I;Lee, Do-Heon;Cho, Kwang-Hwi;Won, Yong-Gwan;Kim, Byoung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.261-266
    • /
    • 2003
  • A protein, which is a linear polymer of amino acids, is one of the most important bio-molecules composing biological structures and regulating bio-chemical reactions. Since the characteristics and functions of proteins are determined by their amino acid sequences in principle, protein sequence determination is the starting point of protein function study. This paper proposes a protein sequence prediction method based on data mining techniques, which can overcome the limitation of previous bio-chemical sequencing methods. After applying multiple proteases to acquire overlapped protein fragments, we can identify candidate fragment sequences by comparing fragment mass values with peptide databases. We propose a method to construct multi-partite graph and search maximal paths to determine the protein sequence by assembling proper candidate sequences. In addition, experimental results based on the SWISS-PROT database showing the validity of the proposed method is presented.

Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach

  • Joung, Jong-Young;Kim, Hyoung-Joon;Kim, Hwan-Mook;Ahn, Soon-Kil;Nam, Ky-Youb;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1123-1127
    • /
    • 2012
  • P-gp (P-glycoprotein) is a member of the ATP binding cassette (ABC) family of transporters. It transports many kinds of anticancer drugs out of the cell. It plays a major role as a cause of multidrug resistance (MDR). MDR function may be a cause of the failure of chemotherapy in cancer and influence pharmacokinetic properties of many drugs. Hence classification of candidate drugs as substrates or nonsubstrate of the P-gp is important in drug development. Therefore to identify whether a compound is a P-gp substrate or not, in silico method is promising. Recursive Partitioning (RP) method was explored for prediction of P-gp substrate. A set of 261 compounds, including 146 substrates and 115 nonsubstrates of P-gp, was used to training and validation. Using molecular descriptors that we can interpret their own meaning, we have established two models for prediction of P-gp substrates. In the first model, we chose only 6 descriptors which have simple physical meaning. In the training set, the overall predictability of our model is 78.95%. In case of test set, overall predictability is 69.23%. Second model with 2D and 3D descriptors shows a little better predictability (overall predictability of training set is 79.29%, test set is 79.37%), the second model with 2D and 3D descriptors shows better discriminating power than first model with only 2D descriptors. This approach will be used to reduce the number of compounds required to be run in the P-gp efflux assay.

Protein Function Finding Systems through Domain Analysis on Protein Hub Network (단백질 허브 네트워크에서 도메인분석을 통한 단백질 기능발견 시스템)

  • Kang, Tae-Ho;Ryu, Jea-Woon;Kim, Hak-Yong;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.259-271
    • /
    • 2008
  • We propose a protein function finding algorithm that is able to predict specific molecular function for unannotated proteins through domain analysis from protein-protein network. To do this, we first construct protein-protein interaction(PPI) network in Saccharomyces cerevisiae from MIPS databases. The PPI network(proteins; 3,637, interactions; 10,391) shows the characteristics of a scale-free network and a hierarchical network that proteins with a number of interactions occur in small and the inherent modularity of protein clusters. Protein-protein interaction databases obtained from a Y2H(Yeast Two Hybrid) screen or a composite data set include random false positives. To filter the database, we reconstruct the PPI networks based on the cellular localization. And then we analyze Hub proteins and the network structure in the reconstructed network and define structural modules from the network. We analyze protein domains from the structural modules and derive functional modules from them. From the derived functional modules with high certainty, we find tentative functions for unannotated proteins.

Sequence driven features for prediction of subcellular localization of proteins (단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF

Prediction of hub genes of Alzheimer's disease using a protein interaction network and functional enrichment analysis

  • Wee, Jia Jin;Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.39.1-39.8
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic, progressive brain disorder that slowly destroys affected individuals' memory and reasoning faculties, and consequently, their ability to perform the simplest tasks. This study investigated the hub genes of AD. Proteins interact with other proteins and non-protein molecules, and these interactions play an important role in understanding protein function. Computational methods are useful for understanding biological problems, in particular, network analyses of protein-protein interactions. Through a protein network analysis, we identified the following top 10 hub genes associated with AD: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through gene enrichment, it was identified that most gene functions could be classified as integral to the plasma membrane, G-protein coupled receptor activity, and cell communication under gene ontology, as well as involvement in signal transduction pathways. Based on the convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, and CNR2.

Consideration of the entropic effect in protein-ligand docking using colony energy (콜로니 에너지를 이용한 단백질-리간드 결합 문제에서의 엔트로피 효과 계산)

  • Lee, Ju-Yong;Seok, Cha-Ok
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Computational prediction of protein-ligand binding has been widely used as a tool to discover lead compounds fur new drugs. Prediction accuracy is determined in part by the scoring function used in docking calculations. Diverse scoring functions are available, and these can be classified into force-field based, empirical, and knowledge-based functions depending upon the basic assumptions made in development. Among these, force-field based functions consider physical interactions the most in detail. However, the force-field based functions have the drawback of not including the entropic effect while considering only the energy contribution such as dispersion or electrostatic forces. In this article, a method to take into account of the entropic effect using the colony energy is suggested when force-field based scoring functions is used by extracting conformational information obtained from the pre-existing docking program. An improved result for decoy discrimination is illustrated when the method is applied to the DOCK scoring function, and this implies that more accurate docking calculation is possible.

  • PDF

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Classification Protein Subcellular Locations Using n-Gram Features (단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측)

  • Kim, Jinsuk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.12-16
    • /
    • 2007
  • The function of a protein is closely co-related with its subcellular location(s). Given a protein sequence, therefore, how to determine its subcellular location is a vitally important problem. We have developed a new prediction method for protein subcellular location(s), which is based on n-gram feature extraction and k-nearest neighbor (kNN) classification algorithm. It classifies a protein sequence to one or more subcellular compartments based on the locations of top k sequences which show the highest similarity weights against the input sequence. The similarity weight is a kind of similarity measure which is determined by comparing n-gram features between two sequences. Currently our method extract penta-grams as features of protein sequences, computes scores of the potential localization site(s) using kNN algorithm, and finally presents the locations and their associated scores. We constructed a large-scale data set of protein sequences with known subcellular locations from the SWISS-PROT database. This data set contains 51,885 entries with one or more known subcellular locations. Our method show very high prediction precision of about 93% for this data set, and compared with other method, it also showed comparable prediction improvement for a test collection used in a previous work.

  • PDF

Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine

  • Kim, Jong-Kyoung;Raghava, G. P. S.;Kim, Kwang-S.;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.158-166
    • /
    • 2004
  • Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein. Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular localization of proteins. The most important factor in determining the accuracy of these methods, is a way of extracting useful features from protein sequences. We propose a new method for extracting appropriate features only from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our feature extraction method based on pairwise sequence alignment, is useful for this classification problem.

  • PDF