• Title/Summary/Keyword: protein damage

검색결과 1,186건 처리시간 0.03초

저 및 표준단백식이로 성장시킨 흰쥐에 Toluene 투여가 간 손상에 미치는 영향 (Effect of the Toluene Administration on the Liver Damage in Rats Fed Low or Standard Protein Diet)

  • 윤종국;김경순;임영숙
    • 한국식품영양과학회지
    • /
    • 제25권6호
    • /
    • pp.981-985
    • /
    • 1996
  • 식이성 단백질 함량이 toluene에 의한 간 손상에 어떠한 영 향을 미치는지를 검토할 목적으로 흰쥐를 저 단백식이 (casein 7%, LP) 및 고단백식이 (casein 20%, SP)로 성장시킨 후 체중 100g당 toluene과 olive oil의 동량흔액 0.2ml를 1일 1회 4번 투여한 다음 24시간 후 처치하였다. 체중 100g당 간무게는 SP군이 대조군에 비하여 약 28%, LP군은 약 17%의 유의한 증가를 보였으며 혈청 xanthine oxidase(XO)활성은 SP군에서는 약 35%의 유의한 증가를 나타내었으나 LP군에서도 증가되었으나 유의성은 없었다. 한편 toluene투여로 인한 간 glycogen, glutathione(GSH) 함량 감소율에 있어서는 SP군이 LP군 보다 높게 나타났으며 간세포의 대조군에 대한 cytosol, mitochondria 단백함량 감소율 역시 SP군이 LP군 보다 증가되는 경향을 보였다. 그리고 병리조직검사 소견에서는 SP군에서 swelling 정도가 LP군에 비하여 심화되어 나타남을 알 수 있었다.

  • PDF

Hair Damage and Wave Efficiency according to the Degree of Alkalinity in Permanent Wave

  • Jeong, Nam-Young;Lim, Sun-Nye;Choi, Chang-Nam
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.136-141
    • /
    • 2012
  • Diversification and individualization are pursued to fulfill the increasing human desire for beauty. There are many methods to change human appearances; of these, a permanent wave is often applied to improve beauty. A permanent wave uses physical and chemical methods to break and reform the bonds of natural hair. Thus, research into the optimized conditions for permanent waves is necessary to minimize hair damage and improve the efficiency of the treatment. The object of this study is to examine the effect of varying the alkalinity (8%, 12%, and 16%) of the permanent wave treatment on the wave efficiency, degree of hair damage via tensile strength, and degree of hair protein release. The results indicate that the treatment with the highest alkalinity (16%) is more effective than that with 8% alkalinity; however, the degree of hair damage when treated with the 16% alkalinity wave is higher than with the 8% alkalinity wave. Additionally, hair proteins increasingly dissolve with increasing alkalinity of the permanent wave.

A $G_{4}$ Sequence within PHR1 Promoter Acts as a Gate for Cross-Talks between Damage-Signaling Pathway and Multi-Stress Response

  • Jang, Yeun-Kyu;Kim, Eun-Mi;Park, Sang-Dai
    • Animal cells and systems
    • /
    • 제6권3호
    • /
    • pp.271-275
    • /
    • 2002
  • Rph1 and Gisl are damage-responsive repressors involved in PHR1 expression. They have two $C_{2}$H/ sub 2/ zinc finger motifs as putative DNA binding domains and N-terminal conserved domain with unknown function. They are also found in the human retinoblastoma binding protein 2 and the mouse jumonji- encoded protein. The repressors are able to bind to A $G_{4}$ sequence within a 39-bp sequence called upstream repressing sequence of PHR1 promoter (UR $S_{PHR1}$) responsible for the damage-response of PHR1. We report here that Rph1 is predominantly localized in the nucleus as examined by fluorescence microscopic analysis with GFP-Rph1 fusion protein. On the basis of the fact that the A $G_{4}$ sequence that is recognized by Rph1 and Gisl is also recognized by Msn2 and Msn4 in a process of stress response, we a1so tried to examine the in vivo function of A $G_{4}$ and the role of Msn2 and Msn4 in PHR1 expression. Our results demonstrate that Msn2 and Msn4 are actually required for the basal transcription of PHR1 expression but not for its damage induction. When A $G_{4}$ sequence was inserted into the minimal promoter of the cyc1-LacZ reporter, the increased LacZ expression was observed indicating its involvement in transcriptional activation. The data suggest that the A $G_{4}$ is primarily required for basal transcriptional activation of PHR1 or CYC1 promoter through the possible involvement of Msn2 and Msn4. However, since the A $G_{4}$ is also involved in the repression of PHR1 via Rphl and Gisl, it is proposed that A $G_{4}$ functions as either URS or upstream activating sequence (UAS) depending on the promoter context.t.

Post-Translational Regulation of the RSF1 Chromatin Remodeler under DNA Damage

  • Min, Sunwoo;Choi, Yong Won;Yun, Hansol;Jo, Sujin;Ji, Jae-Hoon;Cho, Hyeseong
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.127-133
    • /
    • 2018
  • Chromatin remodeling factors are involved in many cellular processes such as transcription, replication, and DNA damage response by regulating chromatin structure. As one of chromatin remodeling factors, remodeling and spacing factor 1 (RSF1) is recruited at double strand break (DSB) sites and regulates ataxia telangiectasia mutated (ATM) -dependent checkpoint pathway upon DNA damage for the efficient repair. RSF1 is overexpressed in a variety of cancers, but regulation of RSF1 levels remains largely unknown. Here, we showed that protein levels of RSF1 chromatin remodeler are temporally upregulated in response to different DNA damage agents without changing the RSF1 mRNA level. In the absence of SNF2h, a binding partner of RSF1, the RSF1 protein level was significantly diminished. Intriguingly, the level of RSF1-3SA mutant lacking ATM-mediated phosphorylation sites significantly increased, and upregulation of RSF1 levels under DNA damage was not observed in cells overexpressing ATM kinase. Furthermore, failure in the regulation of RSF1 level caused a significant reduction in DNA repair, whereas reconstitution of RSF1, but not of RSF1-3SA mutants, restored DSB repair. Our findings reveal that temporal regulation of RSF1 levels at its post-translational modification by SNF2h and ATM is essential for efficient DNA repair.

피부화상에 의한 피부 및 간의 조직학적 변화에 관한 연구 (A study on Histologically Change of the Skin and Liver in Skin Burn)

  • 김한수;김상수;김용권
    • 대한물리치료과학회지
    • /
    • 제8권1호
    • /
    • pp.923-934
    • /
    • 2001
  • In order to investigate a pathogenesis of liver damage induced by skin burn, thermal injury was induced by scald burn on entirely dorsal surface in rats (total body surface area 30%) except for inhalated injury. At 5 and 24 h after scald bum, biochemical assay and morphological changes in skin tissue, serum and liver tissue were examined. The effects of bum injury on the levels of glutathione, lipid peroxide and on the activities of oxygen free radical generating and scavenging enzymes have been determined in association with observing of histologic and ultrastructural changes, measuring the protein concentration in plasma, and counting the number of intravascular polymorphonuclear leukocytes. The activity of xanthine oxidase, an enzyme of oxygen free radical generating system. was elevated (p<0.01) in serum, but not in skin and in liver tissue. Futhermore, thermal injury decreased not only the protein concentration in plasma but also the number of leukocytes, that indicates induction of edema formation with protein exudation and inflammation by neutrophil infiltration into the internal organs. These data suggest that acute dermal scald burn injury leads to liver damage, that is related to elevation of xanthine oxidase activity in serum. Xanthine oxidase may be a key role in the pathogenesis of liver damage induced by skin burn.

  • PDF

Diclofenac 투여 후 시간경과에 따른 장손상과 장내세균전위의 변화 (The Changes in Intestinal Damage and Bacterial Translocation with Time after Administration of Diclofenac)

  • 김은정;김정욱
    • 약학회지
    • /
    • 제52권4호
    • /
    • pp.293-298
    • /
    • 2008
  • Non-steroidal anti-inflammatory drug (NSAID)-induced gut damage and bacterial translocation (BT) have not been studies well, especially from the perspective of time after administration of NSAIDs. We therefore examined these changes in animals. The study was performed on 5 groups of rat; a control group (group A) and diclofenac groups (groups B, C, E, and F). Rats in the diclofenac groups were orally administered diclofenac sodium before intestinal permeability (IP) measurement (group B, 1 h before measurement; group C, 10 h before; group D, 22 h before; and group E, 52 h before). The IP, stool pellet number, serum biochemical profile, enteric bacterial number, and BT in the mesenteric lymph nodes (MLNs), liver, spleen, kidney and heart were measured. The administration of diclofenac resulted in significantly increased IP, caused intestinal protein loss, decreased stool pellet number, caused enteric bacterial overgrowth and increased BT in multiple organs in groups A, B, C, and D. IF, intestinal protein loss, and the BT in the liver and the spleen in group E were decreased than those in group D. There were no differences in the other parameters between group D and E. In the recovery phase of the diclofenac-induced gut damage, enteric bacterial overgrowth and BT in the kidneys and the heart did not change while the BT in the reticuloendothelial systems such as in the MLNs and liver was decreased.

Cyclohexane에 의한 랫드의 폐손상 기전 (Mechanism of Lung Damage Induced by Cyclohexane in Rats)

  • 전태원;윤종국
    • Toxicological Research
    • /
    • 제18권2호
    • /
    • pp.159-165
    • /
    • 2002
  • Recently, we reported (korean J. Biomed. Lab. Sci., 6(4): 245-251, 2000) that cyclohexane (l.56 g/kg of body wt., i.p.) administration led to lung injury in rats. However the detailed mechanism remain to be elucidated. This study was designed to clarify the mechanism of lung damage induced by cyclohexane in rats. First, lung damage was assessed by quantifying bronchoalveolar lavage fluid (BAL) protein content as well us by histopathological examination. Second, activities of serum xanthine oxidase (XO), pulmonary XO and oxygen free radical scavenging enzymes. XO tope conversion (O/D + O, %) ratio and content of reduced glutathione (GSH) were determined. In the histopathological findings, the vasodilation, local edema and hemorrhage were demonstrated in alveoli of lung. And vascular lumens filled with lipid droplets, increased macrophages in luminal margin and increased fibroblast-like interstitial cells in interstitial space were observed in electron micrographs. The introperitoneal treatment of cyclohexane dramatically increased BAL protein by 21-fold compared with control. Cyclohexane administration to rats led to a significant rise of serum and pulmonary XO activities and O/D + O ratio by 47%,30% and 24%, respectively, compared witれ control. Furthermore, activities of pulmonary oxygen free radical scavenging enzymes such as superoxide dismutase, glutathione peroxidase and glutathione S-transferase, and GSH content were not found to be statistically different between control and cyclohexane-treated rats. These results indicate that intraperitoneal injection of cyclohexane to rats may induce the lipid embolism in pulmonary blood vessel and lead to the hypoxia with the ensuing of oxygen free radical generation, and which may be responsible for the pulmonary injury.

Host Cellular Response during Enterohaemorrhagic Escherichia coli Shiga Toxin Exposure

  • Kyung-Soo, Lee;Seo Young, Park;Moo-Seung, Lee
    • 한국미생물·생명공학회지
    • /
    • 제50권4호
    • /
    • pp.441-456
    • /
    • 2022
  • Shiga toxins (Stxs) are major virulence factors from the enterohemorrhagic Escherichia coli (EHEC), a subset of Stx-producing Escherichia coli. Stxs are multi-functional, ribosome-inactivating proteins that underpin the development of hemolytic uremic syndrome (HUS) and central nervous system (CNS) damage. Currently, therapeutic options for the treatment of diseases caused by Stxs are limited and unsatisfactory. Furthermore, the pathophysiological mechanisms underpinning toxin-induced inflammation remain unclear. Numerous works have demonstrated that the various host ribotoxic stress-induced targets including p38 mitogen-activated protein kinase, its downstream substrate Mitogen-activated protein kinase-activated protein kinase 2, and apoptotic signaling via ER-stress sensors are activated in many different susceptible cell types following the regular retrograde transportation of the Stxs, eventually leading to disturbing intercellular communication. Therapeutic options targeting host cellular pathways induced by Stxs may represent a promising strategy for intervention in Stx-mediated acute renal dysfunction, retinal damage, and CNS damage. This review aims at fostering an in-depth understanding of EHEC Stxs-mediated pathogenesis through the toxin-host interactions.

Protective Effects of Auraptene against Free Radical-Induced Erythrocytes Damage

  • Khadijeh Jamialahmadi;Amir Hossein Amiri;Fatemeh Zahedipour;Fahimeh Faraji;Gholamreza Karimi
    • 대한약침학회지
    • /
    • 제25권4호
    • /
    • pp.344-353
    • /
    • 2022
  • Objectives: Auraptene is the most abundant natural prenyloxycoumarin. Recent studies have shown that it has multiple biological and therapeutic properties, including antioxidant properties. Erythrocytes are constantly subjected to oxidative damage that can affect proteins and lipids within the erythrocyte membrane and lead to some hemoglobinopathies. Due to the lack of sufficient information about the antioxidant effects of auraptene on erythrocytes, this study intended to evaluate the potential of this compound in protecting radical-induced erythrocytes damages. Methods: The antioxidant activity of auraptene was measured based on DPPH and FRAP assays. Notably, oxidative hemolysis of human erythrocytes was used as a model to study the ability of auraptene to protect biological membranes from free radical-induced damage. Also, the effects of auraptene in different concentrations (25-400 µM) on AAPH-induced lipid/protein peroxidation, glutathione (GSH) content and morphological changes of erythrocytes were determined. Results: Oxidative hemolysis and lipid/protein peroxidation of erythrocytes were significantly suppressed by auraptene in a time and concentration-dependent manner. Auraptene prevented the depletion of the cytosolic antioxidant GSH in erythrocytes. Furthermore, it inhibited lipid and protein peroxidation in a time and concentration-dependent manner. Likewise, FESEM results demonstrated that auraptene reduced AAPH-induced morphological changes in erythrocytes. Conclusion: Auraptene efficiently protects human erythrocytes against free radicals. Therefore, it can be a potent candidate for treating oxidative stress-related diseases.

Cellular DNA Repair of Oxidative Deoxyribose Damage by Mammalian Long-Patch Base Excision Repair

  • Sung Jung-Suk;Son Mi-Young
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.103-108
    • /
    • 2005
  • 2-Deoxyribonolactone (dL) arises as a major DNA damage induced by a variety of agents, involving free radical attack and oxidation of C1'-deoxyribose in DNA. We investigated whether dL lesions can be repaired in mammalian cells and the mechanisms underlying the role of DNA polymerase $\beta$ in processing of dL lesions. Pol $\beta$ appeared to be trapped by dL residues, resulting in stable DNA-protein cross-links. However, repair DNA synthesis at site-specific dL sites occurred effectively in cell-free extracts, but predominantly accompanied by long-patch base excision repair (BER) pathway. Reconstitution of long-patch BER demonstrated that FEN1 was capable of removing the displaced flap DNA containing a 5'-dL residue. Cellular repair of dL lesions was largely dependent on the DNA polymerase activity of Pol $\beta$. Our observations reveal repair mechanisms of dL and define how mammalian cells prevent cytotoxic effects of oxidative DNA lesions that may threaten the genetic integrity of DNA.

  • PDF