• Title/Summary/Keyword: protein catabolic rate

Search Result 9, Processing Time 0.02 seconds

Dietary Evaluation and Protein Catabolic Rate in Maintenance Hemodialysis Patients (혈액투석환자의 식이조사 및 Protein Catabolic Rate에 관한 연구)

  • 장유경
    • Journal of Nutrition and Health
    • /
    • v.25 no.3
    • /
    • pp.256-263
    • /
    • 1992
  • As various metabolic alterations develope in uremic patients. their diets need to be restricted, Furthermore medical complications with accompanying anorexia result in further complications and decrease in body strength. To assess the nutritional status of hemodialyzed patients we performed evaluation for dietary intake and protein catabolic rate(PCR) For 24 clinically stable male patients undergoing maintenance hemodialysis dietary intake was estimated by 3-day food record method and PCR was calculated with blood urea nitrogen at pre and post hemodialysis. The results were as follows : 1) Average daily energy and protein intake were 26.7$\pm$5.1kcal/kg of body weight. 0.95$\pm$0.19 g/kg of body weight respectively. 2) Protein catabolic rate calculated from interdialysis blood urea nitrogen levels was 1.00$\pm$0.20g/kg of body weight. Protein catabolic rate was correlated with the amount of Protein intake(r=0.44 p<0.05) 3) Relative body weight(RBW) of the subjects was smaller than that of healthy man without hemodialysis. Calorie and protein intake and protein catabolic rate were significantly different (p<0.05) between patients with lower RBW(<90% of ideal body weight) and those with normal RBW(90~110% of ideal body weight) and those with normal RBW(90~110% of iedal body weight) 4) The duration of hemodialysis did not have a significant effect on the nutritional status of the subjects.

  • PDF

Effects of the Anabolic Steroid, Nandrolone Pheylpropionate, on Growth and Muscle Protein Metabolism in ACTH-treated Rats (ACTH를 투여한 흰쥐에서 아나보릭스테로이드인 Nandrolone Phenylpropionate가 성장한 근육단백질 대사에 미치는 영향)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.29 no.8
    • /
    • pp.874-880
    • /
    • 1996
  • The effects of an anabolic steroid, nandrolone phenylpropionate(NPP), on body weight gain and body protein, and muscle protein metabolism were inestigated in adrenocorticotrophic hormone(ACTH)-treated male and female rats. Daily injections of 100ug/day of ACTH for 7-8 days caused a cessation of growth in females and a net loss of body weight in males which were associated with significant reductions in body protein content. However, food intake was not affected by ACTH in either sex. The weight, protein content and fractional rate of protein synthesis, measured in vivo, of gastrocnemius muscle were all significantly reduced in both sexes. NPP at a dose of 4mg/kg body weight prevented the reduction in body weight gain in ACTH-treate females but not in males. However, boy protein content was increased by NPP in both sexes which was associated with increases in the weight, protein content and fractional rate of protein synthesis of gastrocnemius muscle. ACTH treatment caused a marked increase in plasma concentrations of corticosterone in both sexes. NPP suppressed much of the increases in corticosterone concentrations in both sexes. The results of the present study suggest that NPP exerts at least part of its anabolic effect by reducing plasma concentrations of catabolic glucocorticoid hormones, through suppressing the response of the adrenals to ACTH.

  • PDF

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

Effects of Leucine on in Vivo Protein Synthesis in Skeletal Muscles of Fed and Food-Deprived Rats (Leucine이 정상 또는 굶게 된 쥐의 골격근육의 단백질 생합성에 미치는 영향)

  • 장순옥
    • Journal of Nutrition and Health
    • /
    • v.21 no.4
    • /
    • pp.242-252
    • /
    • 1988
  • In vivo effects of leucine on skeletal muscle protein synthesis in fed and I-day food deprived young rats were examined. Animals assigned to leucine group were given a single i.p. injection of 80 or 160flmoles of leucine while control group animals were saline sham injected. The rate of protein synthesis was measured by the amount of $^{14}\textrm{C} incorporated into muscle protein after a single injection of $^{14}\textrm{C}-tyrosine, IO$\mu$ Ci/l00g B.W. Examined muscles were two different types of hind limb muscles. the oxidative solues and the glycolytic EDL and plantaris. Administered leucine elevated the concentration of free leucine in soleus muscles by 4-6.8 times the normal level. A massive dose of leucine, 160 flmoles, stimulated protein synthesis in the EDL and plantaris by 24 %, 29 % respectively of straved rats. The soleus of I-day food deprived rats and both types of muscles in fed rats did not respond to the injected leucine. The synthesis rate of the EDL and plantaris was supressed to one-half of the normal while the soleus that was not stimulated by leucine maintained a relatively normal rate, 78 %, of protein synthesis after I-day of food deprivation. Thus, in vivo stimulatory effect of leucine appears to be not a general phenomenon but to be related to the degree of catabolic condition developed by stress such as food deprivation. Although anabolic effects of leucine observed in this study was limited, any applicability of this special property of leucine to human subjects for the purpose of protein sparing in skeletal muscles remains to be examined.

  • PDF

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF

Role of Peptides in Rumen Microbial Metabolism - Review -

  • Wallace, R.J.;Atasoglu, C.;Newbold, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.139-147
    • /
    • 1999
  • Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine ptoteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in ptoteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on tapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

Active Immunization against Adrenocorticotropic Hormone in Growing-Finishing Barrows: An Initial Trial and Evaluation

  • Lee, C.Y.;Baik, K.H.;Jeong, J.H.;Lee, S.D.;Park, J.K.;Song, Y.M.;Kim, Y.S.;Sohn, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.410-415
    • /
    • 2002
  • Adrenal glucocorticoids, secreted by the stimulus of adrenocorticotropic hormone (ACTH), are catabolic hormones in the pig. The present study was conducted to find whether active immunization against ACTH would suppress cortisol secretion accompanied by an increased growth rate in growing-finishing barrows. ACTH was conjugated to keyhole limpet hemocyanin or human histone using glutaraldehyde or 3-maleimidobenzoic acid N-hydroxysuccinimide, under a 2 (ACTH vs no hapten)${\times}$2 (carrier)${\times}$2 (crosslinker) factorial arrangement of treatments. Cross-bred barrows weighing approximately 25 kg were injected with an ACTHcarrier or carrier only conjugate every 4th wk and slaughtered at approximately 110 kg body weight. Antibodies against ACTH were detected in serum, as determined by $[^{125}I]$ACTH-binding activity, in most animals immunized against the ACTH conjugate, but not in carrier only-injected animals, except for the animals which had received the hapten conjugated to histone via glutaraldehyde. The $[^{125}I]$ACTH-binding activity of serum increased after the second booster injection, but overall ACTH antibody titer was very low. Main effect was not detected not only for the carrier and crosslinker but for the hapten in serum cortisol concentration, ADG, loin muscle area, backfat thickness and longissimus muscle composition including fat and protein. In addition, bound $[^{125}I]$ACTH percentage had no relation to cortisol concentration or to any of the above growth-related variables. Results suggest that ACTH or its conjugates used in the present study were not immunogenically potent enough to affect the glucocorticoid secretion and thus the growth of the immunized pigs.

Manipulation of Tissue Energy Metabolism in Meat-Producing Ruminants - Review -

  • Hocquette, J.F.;Ortigues-Marty, Isabelle;Vermorel, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.720-732
    • /
    • 2001
  • Skeletal muscle is of major economic importance since it is finally converted to meat for consumers. The increase in meat production with low costs of production may be achieved by optimizing muscle growth, whereas a high meat quality requires, among other factors, the optimization of intramuscular glycogen and fat stores. Thus, research in energy metabolism aims at controling muscle metabolism, but also liver and adipose tissue metabolism in order to optimize energy partitioning in favour of muscles. Liver is characterized by high anabolic and catabolic rates. Metabolic enzymes are regulated by nutrients through short-term regulation of their activities and long-term regulation of expression of their genes. Consequences of liver metabolic regulation on energy supply to muscles may affect protein deposition (and hence growth) as well as intramuscular energy stores. Adipose tissues are important body reserves of triglycerides, which result from the balance between lipogenesis and lipolysis. Both processes depend on the feeding level and on the nature of nutrients, which indirectly affect energy delivery to muscles. In muscles, the regulation of rate-limiting nutrient transporters, of metabolic enzyme activities and of ATP production, as well as the interactions between nutrients affect free energy availability for muscle growth and modify muscle metabolic characteristics which determine meat quality. The growth of tissues and organs, the number and the characteristics of muscle fibers depend, for a great part, on early events during the fetal life. They include variations in quantitative and qualitative nutrient supply to the fetus, and hence in maternal nutrition. During the postnatal life, muscle growth and characteristics are affected by the age and the genetic type of the animals, the feeding level and the diet composition. The latter determines the nature of available nutrients and the rate of nutrient delivery to tissues, thereby regulating metabolism. Physical activity at pasture also favours the orientation of muscle metabolism, towards the oxidative type. Consequently, breeding systems may be of a great importance during the postnatal life. Research is now directed towards the determination of individual tissue and organ energy requirements, a better knowledge of nutrient partitioning between and within organs and tissues. The discovery of new molecules (e. g. leptin), of new molecular mechanisms and of more powerful techniques (DNA chips) will help to achieve these objectives. The integration of the different levels of knowledge will finally allow scientists to formulate new types of diets adapted to sustain a production of high quality meat with lower costs of production.