• 제목/요약/키워드: protein arginine methyltransferase 1

검색결과 11건 처리시간 0.025초

Methylation by Protein Arginine Methyltransferase

  • Woo , Yun-Na;Cho, Eun-Jung;Hong , Sung-Youl;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.330.1-330.1
    • /
    • 2002
  • Arginine methylation is a common post-translation protein modification in eukaryotic cells. Protein-arginine N-methyltransferase transfer methyl groups from S-adenosyl-L-methionine to the guanidino group of arginine residues. However. The significant of this modification has been questionable. because it occurs rarely and is present at very low abundance. Recently, the discovery of two protein arginine methyltransferase, PRMT1 and CARM1, as cofactors required for responses to muclear Hormone receptors provided an indicationthat arginine methylationhave an important role in transcriptional regulation. (omitted)

  • PDF

Identification and Characterization of Protein Arginine Methyltransferase 1 in Acanthamoeba castellanii

  • Moon, Eun-Kyung;Kong, Hyun-Hee;Hong, Yeonchul;Lee, Hae-Ahm;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.109-114
    • /
    • 2017
  • Protein arginine methyltransferase (PRMT) is an important epigenetic regulator in eukaryotic cells. During encystation, an essential process for Acanthamoeba survival, the expression of a lot of genes involved in the encystation process has to be regulated in order to be induced or inhibited. However, the regulation mechanism of these genes is yet unknown. In this study, the full-length 1,059 bp cDNA sequence of Acanthamoeba castellanii PRMT1 (AcPRMT1) was cloned for the first time. The AcPRMT1 protein comprised of 352 amino acids with a SAM-dependent methyltransferase PRMT-type domain. The expression level of AcPRMT1 was highly increased during encystation of A. castellanii. The EGFP-AcPRMT1 fusion protein was distributed over the cytoplasm, but it was mainly localized in the nucleus of Acanthamoeba. Knock down of AcPRMT1 by synthetic siRNA with a complementary sequence failed to form mature cysts. These findings suggested that AcPRMT1 plays a critical role in the regulation of encystation of A. castellanii. The target gene of AcPRMT1 regulation and the detailed mechanisms need to be investigated by further studies.

Regulation of Pluripotency-related Genes and Differentiation in Mouse Embryonic Stem Cells by Direct Delivery of Cell-penetrating Peptide-conjugated CARM1 Recombinant Protein

  • Choi, Sara;Jo, Junghyun;Seol, Dong-Won;Cha, Soo Kyung;Lee, Jeoung Eun;Lee, Dong Ryul
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권1호
    • /
    • pp.9-16
    • /
    • 2013
  • Coactivator-associated arginine methyltransferase 1 (CARM1) is included in the protein arginine methyltransferase (PRMT) family, which methylates histone arginine residues through posttranslational modification. It has been proposed that CARM1 may up-regulate the expression of pluripotency-related genes through the alteration of the chromatin structure. Mouse embryonic stem cells (mESCs) are pluripotent and have the ability to self-renew. The cells are mainly used to study the genetic function of novel genes, because the cells facilitate the transmission of the manipulated genes into target mice. Since the up-regulated methylation levels of histone arginine residue lead to the maintenance of pluripotency in embryos and stem cells, it may be suggested that CARM1 overexpressing mESCs elevate the expression of pluripotency-related genes in reconstituted embryos for transgenic mice and may resist the differentiation into trophectoderm (TE). We constructed a fusion protein by connecting CARM1 and 7X-arginine (R7). As a cell-penetrating peptide (CPP), can translocate CARM1 protein into mESCs. CPP-CARM1 protein was detected in the nuclei of the mESCs after a treatment of 24 hours. Accordingly, the expression of pluripotency-related genes was up-regulated in CPP-CARM1-treated mESCs. In addition, CPP-CARM1-treated mESC-derived embryoid bodies (EBs) showed an elevated expression of pluripotency-related genes and delayed spontaneous differentiation. This result suggests that the treatment of recombinant CPP-CARM1 protein elevates the expression of pluripotency-related genes of mESCs by epigenetic modification, and this protein-delivery system could be used to modify embryonic fate in reconstituted embryos with mESCs.

Characterization of Protein Arginine Methyltransferases in Porcine Brain

  • Hung, Chien-Jen;Chen, Da-Huang;Shen, Yi-Ting;Li, Yi-Chen;Lin, Yi-Wei;Hsieh, Mingli;Li, Chuan
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.617-624
    • /
    • 2007
  • Protein arginine methylation is a posttranslational modification involved in various cellular functions including cell signaling, protein subcellular localization and transcriptional regulation. We analyze the protein arginine methyltransferases (PRMTs) that catalyze the formation of methylarginines in porcine brain. We fractionated the brain extracts and determined the PRMT activities as well as the distribution of different PRMT proteins in subcellular fractions of porcine brain. The majority of the type I methyltransferase activities that catalyze the formation of asymmetric dimethylarginines was in the cytosolic S3 fraction. High specific activity of the methyltransferase was detected in the S4 fraction (high-salt stripping of the ultracentrifugation precipitant P3 fraction), indicating that part of the PRMT was peripherally associated with membrane and ribosomal fractions. The amount and distribution of PRMT1 are consistent with the catalytic activity. The elution patterns from gel filtration and anion exchange chromatography also indicate that the type I activity in S3 and S4 are mostly from PRMT1. Our results suggest that part of the type I arginine methyltransferases in brains, mainly PRMT1, are sequestered in an inactive form as they associated with membranes or large subcellular complexes. Our biochemical analyses confirmed the complex distribution of different PRMTs and implicate their regulation and catalytic activities in brain.

The role of protein arginine-methyltransferase 1 in gliomagenesis

  • Wang, Shan;Tan, Xiaochao;Yang, Bin;Yin, Bin;Yuan, Jiangang;Qiang, Boqin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.470-475
    • /
    • 2012
  • Protein arginine methyltransferase 1 (PRMT1), a type-I arginine methyltransferase, has been implicated in diverse cellular events. We have focused on the role of PRMT1 in gliomagenesis. In this study, we showed that PRMT1 expression was up-regulated in glioma tissues and cell lines compared with normal brain tissues. The knock-down of PRMT1 resulted in an arrest in the G1-S phase of the cell cycle, proliferation inhibition and apoptosis induction in four glioma cell lines (T98G, U87MG, U251, and A172). Moreover, an in vivo study confirmed that the tumor growth in nude mouse xenografts was significantly decreased in the RNAi-PRMT1 group. Additionally, we found that the level of the asymmetric dimethylated modification of H4R3, a substrate of PRMT1, was higher in glioma cells than in normal brain tissues and decreased after PRMT1 knock-down. Our data suggest a potential role for PRMT1 as a novel biomarker of and therapeutic target in gliomas.

단백질 아르기닌 메틸전이효소 5(PRMT5)에 의한 3T3L-1 세포의 지방세포 분화 조절 (Protein Arginine Methyltransferase 5 (PRMT5) Regulates Adipogenesis of 3T3L-1 Cells)

  • 장민준;양지혜;김은주
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.765-771
    • /
    • 2018
  • $PPAR{\gamma}$는 지방세포의 분화를 조절하는 핵심적인 전사 인자로서 이를 조절하는 후성유전학적 조절 기전이 비만억제 연구에서 중요하게 주목 받고 있다. 선행연구에서 CACUL1이 $PPAR{\gamma}$의 전사 활성 및 지방세포의 분화를 억제하는 corepressor로서 작용함을 밝힌 바 있으며 본 연구에서는 CACUL1의 새로운 결합 단백질로 발굴된 protein arginine methyltransferase 5 (PRMT5)의 $PPAR{\gamma}$ 조절 기능을 분석하였다. PRMT5가 CACUL1과 결합함을 immunoprecipitation assay in vivo와 GST-pull down assay in vitro를 통하여 확인하였다. Luciferase reporter assay 결과로 두 단백질이 상호 협력하여 $PPAR{\gamma}$의 전사 활성을 억제함을 확인하였다. PRMT5가 안정적으로 과발현 또는 knockdown되는 3T3-L1 세포주를 제작하여 지방세포 분화에 미치는 영향을 분석한 결과, PRMT5가 3T3-L1세포의 지방세포 분화를 억제함을 증명하였다. 같은 맥락으로 PRMT5는 $PPAR{\gamma}$의 타겟 유전자인 Lpl과 aP2의 발현을 억제하는 것을 RT-qPCR로 확인하였다. 이상의 연구 결과로 PRMT5이 CACUL1과 결합하여 $PPAR{\gamma}$의 전사 활성을 방해, 나아가 지방세포의 분화를 억제하는 기존에 알려지지 않은 분자적 기전을 처음으로 밝혔다. 따라서, PRMT5 효소 활성의 조절은 비만 억제를 위한 약물 개발에 단서를 제공할 것이다.

Identification of histone methyltransferase RE-IIBP target genes in leukemia cell line

  • Son, Hye-Ju;Kim, Ji-Young;Rhee, Sang-Myung;Seo, Sang-Beom
    • Animal cells and systems
    • /
    • 제16권4호
    • /
    • pp.289-294
    • /
    • 2012
  • Histone methylation has diverse functions including transcriptional regulation via its lysine or arginine residue methylation. Studies indicate that deregulation of histone methylation is linked to human cancers including leukemia. Histone H3K27 methyltrnasferase response element II binding protein (RE-IIBP), as a transcriptional repressor to target gene IL-5, interacts with HDAC and is over-expressed in leukemia patient samples. In this study, we have identified that hematopoiesis-related genes GATA1 and HOXA9 are down-regulated by RE-IIBP in K562 and 293T cells. Transient reporter analysis revealed that GATA1 transcription was repressed by RE-IIBP. On the other hand, HOXA9 and PBX-related homeobox gene MEIS1 was up-regulated by RE-IIBP. These results suggest that RE-IIBP might have a role in hematopoiesis or leukemogenesis by regulating the transcription of target genes, possibly via its H3K27 methyltransferase activity.

Identification and Characterization of Two New S-Adenosylmethionine-Dependent Methyltransferase Encoding Genes Suggested Their Involvement in Stipe Elongation of Flammulina velutipes

  • Huang, Qianhui;Mukhtar, Irum;Zhang, Yelin;Wei, Zhongyang;Han, Xing;Huang, Rongmei;Yan, Junjie;Xie, Baogui
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.441-448
    • /
    • 2019
  • Two new SAM-dependent methyltransferase encoding genes (fvsmt1 and fvsmt2) were identified from the genome of Flammulina velutipes. In order to make a comprehensive characterization of both genes, we performed in silico analysis of both genes and used qRT-PCR to reveal their expression patterns during the development of F. velutipes. There are 4 and 6 exons with total length of 693 and 978 bp in fvsmt2 and fvsmt1, respectively. The deduced proteins, i.e., FVSMT1 and FVSMT2 contained 325 and 230 amino acids with molecular weight 36297 and 24894 Da, respectively. Both proteins contained a SAM-dependent catalytic domain with signature motifs (I, p-I, II, and III) defining the SAM fold. SAM-dependent catalytic domain is located either in the middle or at the N-terminal of FVSMT2 and FVSMT1, respectively. Alignment and phylogenic analysis showed that FVSMT1 is a homolog to a protein-arginine omega-N-methyltransferase, while FVSMT2 is of cinnamoyl CoA O-methyltransferase type and predicted subcellular locations of these proteins are mitochondria and cytoplasm, respectively. qRT-PCR showed that fvsmt1 and fvsmt2 expression was regulated in different developmental stages. The maximum expression levels of fvsmt1 and fvsmt2 were observed in stipe elongation, while no difference was found in mycelium and pileus. These results positively demonstrate that both the methyltransferase encoding genes are involved in the stipe elongation of F. velutipes.

Protein Arginine Methyltransferase 1 Methylates Smurf2

  • Cha, Boksik;Park, Yaerin;Hwang, Byul Nim;Kim, So-young;Jho, Eek-hoon
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.723-728
    • /
    • 2015
  • Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.

Regulation of Nrf2 Transactivation Domain Activity by p160 RAC3/SRC3 and Other Nuclear Co-Regulators

  • Lin, Wen;Shen, Guoxiang;Yuan, Xiaoling;Jain, Mohit R.;Yu, Siwang;Zhang, Aihua;Chen, J. Don;Kong, Ah-Ng Tony
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.304-310
    • /
    • 2006
  • Transcription factor NF-E2-related factor 2 (Nrf2) regulates the induction of Phase II detoxifying enzymes and antioxidant enzymes in response to many cancer chemopreventive compounds. In this study, we investigated the role of receptor associated coactivator (RAC3) or steroid receptor coactivator-3 (SRC3) and other nuclear co-regulators including CBP/p300 (CREB-binding protein), CARM1 (Coactivator-associated arginine methyltransferase), PRMT1 (Protein arginine methyl-transferase 1), and p/CAF (p300/CBP-associated factor) in the transcriptional activation of a chimeric Gal4-Nrf2-Luciferase system containing the transactivation domain (TAD) of Nrf2 in HepG2 cells. The results indicated that RAC3 up-regulated the transactivation activity of Gal4-Nrf2-(1-370) in a dose-dependent manner. The enhancement of transactivation domain activity of Gal4-Nrf2-(1-370) by RAC3 was dampened in the presence of dominant negative mutants of RAC3. Next we studied the effects of other nuclear co-regulators including CBP/p300, CARM1, PRMT1 and p/CAF, and the results showed that they had different level of positive effects on this transactivation domain activity of Gal4-Nrf2-(1-370). But importantly, synergistic effects of these co-regulators in the presence of RAC3/SRC3 on the transactivation activity of Gal4-Nrf2-(1-370) were observed. In summary, our present study showed for the first time that the 160 RAC3/SRC3 is involved in the functional transactivation of TAD of Nrf2 and that the other nuclear co-regulators such as CBP/p300, CARM1, PRMT1 and p/CAF can also transcriptionally activate this TAD of Nrf2 and that they could further enhance the transactivation activity mediated by RAC3/SRC3.