References
- An, W., Kim, J. and Roeder, R. G. (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735-748 https://doi.org/10.1016/j.cell.2004.05.009
- Belandia, B. and Parker, M. G. (2000) Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J. Biol. Chem. 275, 30801-30805 https://doi.org/10.1074/jbc.C000484200
- Chan, K., Han, X. D. and Kan, Y. W. (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc. Natl. Acad. Sci. USA 98, 4611-4616 https://doi.org/10.1073/pnas.081082098
- Chen, D., Huang, S. M. and Stallcup, M. R. (2000) Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J. Biol. Chem. 275, 40810- 40816 https://doi.org/10.1074/jbc.M005459200
- Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T. Aswad, D. W. and Stallcup, M. R. (1999) Regulation of transcription by a protein methyltransferase. Science 284, 2174- 2177 https://doi.org/10.1126/science.284.5423.2174
- Chen, H., Lin, R. J., R. J. Lin, Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M. L, Nakatani, Y. and Evans, R. M. (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569-580 https://doi.org/10.1016/S0092-8674(00)80516-4
- Chen, H., Lin, R. J., Xie, W. Wilpitz, D. and Evans, R. M. (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675- 686 https://doi.org/10.1016/S0092-8674(00)80054-9
- Demarest, S. J., Martinez-Yamout, M., Chung, J. Chen, H., Xu, W. Dyson, H. J. Evans, R. M. and Wright, P. E. (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549-553 https://doi.org/10.1038/415549a
- Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayahshi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313-322 https://doi.org/10.1006/bbrc.1997.6943
- Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76-86 https://doi.org/10.1101/gad.13.1.76
- Jain, A. K., Bloom, D. A. and Jaiswal, A. K. (2005) Nuclear import and export signals in control of NRF2. J. Biol. Chem. 280, 29158-29168 https://doi.org/10.1074/jbc.M502083200
- Katoh, H., Itoh, S., Shen, J. R. and Ikeuchi, M. (2001) Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol. 42, 599-607 https://doi.org/10.1093/pcp/pce074
- Kim, H., Pennie, W. D., Sun, Y. and Colburn, N. H. (1997) Differential functional significance of AP-1 binding sites in the promoter of the gene encoding mouse tissue inhibitor of metalloproteinases-3. Biochem. J. 324, 547-553 https://doi.org/10.1042/bj3240547
- Kim, H. J., Kim, J. H. and Lee, J. W. (1998) Steroid receptor coactivator-1 interacts with serum response factor and coactivates serum response element-mediated transactivations. J. Biol. Chem. 273, 28564-28567 https://doi.org/10.1074/jbc.273.44.28564
- Korzus, E., Nagase, H., Rydell, R. and Travis, J. (1997) The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive elementmediated activation of matrix metalloproteinase 1 gene expression. J. Biol. Chem. 272, 1188-1196 https://doi.org/10.1074/jbc.272.2.1188
- Leo, C., Li, H. and Chen, J. D. (2000) Differential mechanisms of nuclear receptor regulation by receptor-associated coactivator 3. J. Biol. Chem. 275, 5976-5982 https://doi.org/10.1074/jbc.275.8.5976
- Li, H., Gomes, P. J. and Chen, J. D. (1997) RAC3, a steroid/ nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl. Acad. Sci. USA 94, 8479-8484
- Lin, W. J., Gary, J. D., Yang, M. C., Clarke, S. and Herschman, H. R. (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271, 15034-15044 https://doi.org/10.1074/jbc.271.25.15034
- Ma, H., Baumann, C. T., Li, H., Strahl, B. D., Rice, R., Jelinek, M. A., Aswad, D. W., Allis, C. D., Hager, G. L. and Stallcup, M. R. (2001) Hormone-dependent, CARM1-directed, argininespecific methylation of histone H3 on a steroid-regulated promoter. Curr. Biol. 11, 1981-1985 https://doi.org/10.1016/S0960-9822(01)00600-5
- McManus, K. J. and M. J. Hendzel (2001) CBP, a transcriptional coactivator and acetyltransferase. Biochem. Cell Biol. 79, 253- 266
- Moi, P., Chan, K. and Asunis, I., Cao, A. and Kan Y. W. (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 91, 9926-9930 https://doi.org/10.1073/pnas.91.21.9926
- Morse, M. A. and G. D. Stoner (1993) Cancer chemoprevention: principles and prospects. Carcinogenesis 14, 1737-1746 https://doi.org/10.1093/carcin/14.9.1737
- Nakaso, K., Yano, H., Fukuhara, Y. Takeshima, T., Wada-Isoe, K. and Nakashima, K. (2003) PI3K is a key molecule in the Nrf2- mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546, 181-184 https://doi.org/10.1016/S0014-5793(03)00517-9
- Nguyen, T., Huang, H. C. and Pickett, C. B. (2000) Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J. Biol. Chem. 275, 15466-15473 https://doi.org/10.1074/jbc.M000361200
- Rosenfeld, M. G. and Glass, C. K. (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem. 276, 36865-36868 https://doi.org/10.1074/jbc.R100041200
- Shen, G., Hebbar, V. Nair, S., Xu, C., Li, W. Lin, W., Keum, Y. S. Han, J. Gallo, M. A. and Tony Kong, A.-N. (2004) Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J. Biol. Chem. 279, 23052-23060 https://doi.org/10.1074/jbc.M401368200
- Soutoglou, E., Papafotiou, G., Katrakili, N. and Talianidis, I. (2000) Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins. J. Biol. Chem. 275, 12515-12520 https://doi.org/10.1074/jbc.275.17.12515
- Spiegelman, B. M. and Heinrich, R. (2004) Biological control through regulated transcriptional coactivators. Cell 119, 157- 167 https://doi.org/10.1016/j.cell.2004.09.037
- Stallcup, M. R., Chen, D., Koh, S. S., Ma, H., Lee, Y.-H, Li, H., Schurter, B. T. and Aswad, D. W. (2000) Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem. Soc. Trans. 28, 415-418 https://doi.org/10.1042/0300-5127:0280415
- Stallcup, M. R., Kim, J. H., Teyssier, C., Lee, Y. H., Ma, H. and Chen, D. (2003) The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J. Steroid Biochem. Mol. Biol. 85, 139-145 https://doi.org/10.1016/S0960-0760(03)00222-X
- Teyssier, C., Chen, D. and Stallcup, M. R. (2002) Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J. Biol. Chem. 277, 46066-46072 https://doi.org/10.1074/jbc.M207623200
- Venugopal, R. and A. K. Jaiswal (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci USA 93, 14960-14965 https://doi.org/10.1073/pnas.93.25.14960
- Werbajh, S., I. Nojek, et al. (2000) RAC-3 is a NF-kappa B coactivator. FEBS Lett 485, 195-1 https://doi.org/10.1016/S0014-5793(00)02223-7
- Xu, J. and O'Malley, B. W. (2002) Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev. Endocr. Metab. Disord. 3, 185-192 https://doi.org/10.1023/A:1020016208071
- Yadav, N., J. Lee, et al. (2003) Specific protein methylation defects and gene expression perturbations in coactivatorassociated arginine methyltransferase 1-deficient mice. Proc. Natl. Acad. Sci USA 100, 6464-6468. https://doi.org/10.1073/pnas.1232272100
- Zhang, Y., P. Talalay, et al. (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci USA 89, 2399-2403. https://doi.org/10.1073/pnas.89.6.2399
Cited by
- Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells vol.28, pp.4, 2007, https://doi.org/10.1111/j.1745-7254.2007.00549.x
- Histone Modification Enzymes Induced during Chemical Hepatocarcinogenesis vol.127, pp.3, 2007, https://doi.org/10.1248/yakushi.127.469
- Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: A novel mechanism of Nrf2/ARE signaling activation vol.48, pp.4, 2014, https://doi.org/10.3109/10715762.2014.885117
- Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription vol.67, 2014, https://doi.org/10.1016/j.freeradbiomed.2013.10.806
- Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis vol.13, pp.1, 2011, https://doi.org/10.1208/s12248-010-9239-4
- The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation vol.85, pp.6, 2013, https://doi.org/10.1016/j.bcp.2012.11.016
- The Nrf2–Keap1 defence pathway: Role in protection against drug-induced toxicity vol.246, pp.1, 2008, https://doi.org/10.1016/j.tox.2007.10.029
- Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy vol.13, pp.9a, 2009, https://doi.org/10.1111/j.1582-4934.2009.00845.x
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism vol.97, pp.10, 2008, https://doi.org/10.1002/jps.21311
- Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis vol.29, pp.3, 2010, https://doi.org/10.1007/s10555-010-9239-y
- Altered gene expression of transcriptional regulatory factors in tumor marker-positive cells during chemically induced hepatocarcinogenesis vol.167, pp.2, 2006, https://doi.org/10.1016/j.toxlet.2006.08.014
- The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains vol.32, pp.4, 2013, https://doi.org/10.1038/onc.2012.59
- NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK vol.1783, pp.5, 2008, https://doi.org/10.1016/j.bbamcr.2008.01.002