• Title/Summary/Keyword: protection switching time

Search Result 35, Processing Time 0.025 seconds

A Study on the Protection Switching Mechanism for Distribution Automation System Ethernet Networks Service of Distribution Automation System (배전자동화시스템 통신서비스를 위한 이중화 통신망 보호절체 알고리즘 연구)

  • Yu, Nam-Cheol;Kim, Jae-Dong;Oh, Chae-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.744-749
    • /
    • 2013
  • The protection switching technology is widely adopted in the fiber-optical transmission equipments based on TDM(Time Division Multiplexing), such as PDH, SDH/SONET. A variety of protection switching algorithms for Ethernet networks and the progress of standardization are summarized in the document. There are several kinds of protection switching algorithms for Ethernet networks, such as STP, RSTP, MSTP and etc. However, since Ethernet signal move through detour route, it causes much time to recover. Accordingly, it is difficult to secure a usability of Ethernet networks and QOS(Quality of Service). Also, if the protection switching protocol standardized by IEEE and ITU-T is used, it remains a inherent network switching time for protection. Therefore, a specific protection switching algorithm for Ethernet are needed for seamless and stable operation of Ethernet networks service for Distribution Automation System(DAS). A reliable protection algorithm with no switching delay time is very important to implement Self-healing service for DAS. This study of FPGA based protection switching algorithm for Ethernet networks shows that in case of faults occurrence on distribution power network, immediate fault isolation and restoration are conducted through interaction with distribution equipments using P2P(Peer to Peer) communication for protection coordination. It is concluded that FPGA based protection switching algorithm for Ethernet networks available 0ms switching time is crucial technology to secure reliability of DAS.

Shared Protection of Lightpath with Guaranteed Switching Time over DWDM Networks

  • Chen Yen-Wen;Peng I-Hsuan
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.228-233
    • /
    • 2006
  • Survivability is a very important requirement for the deployment of broadband networks because out of service links can affect volumes of traffic even if it is a very short time. And the data paths of broadband networks, which are critical for traffic engineering, are always necessary to be well protected. The procedure of protection or restoration for a path is initiated when failure is detected within the working path. In order to minimize the influence on transmission quality caused by the failure of links and to provide a definite time for the recovery from the failure, the protection switching time (PST) should be carefully considered in the path arrangement. Several researches have been devoted to construct the protection and restoration schemes of data paths over dense wavelength division multiplexing (DWDM) networks, however, there was rare research on the design of data paths with guaranteed protection switching time. In this paper, the PST-guaranteed scheme, which is based on the concept of short leap shared protection (SLSP), for the arrangement of data paths in DWDM networks is proposed. The proposed scheme provides an efficient procedure to determine a just-enough PST-guaranteed backup paths for a working path. In addition to selecting the PST-guaranteed path, the network cost is also considered in a heuristic manner. The experimental results demonstrate that the paths arranged by the proposed scheme can fully meet the desired PST and the required cost of the selected path is competitive with which of the shared path scheme.

Trade-off between Resource Efficiency and Fast Protection for Shared Mesh Protection

  • Cho, Choong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2568-2588
    • /
    • 2021
  • Shared mesh protection (SMP) protects traffic against failures occurring in a working path, as with linear protection, and allows resource sharing of protection paths with different endpoints. The SMP mechanism coordinates multiple protection paths that require shared resources when failures occur on multiple working paths. When multiple failures occur in SMP networks sharing limited resources, activation can fail because some of the resources in the protection path are already in use. In this case, a node confirming that a resource is not available has the option to wait until the resource is available or to withdraw activation of the protection path. In this study, we recognize that the protection switching time and the number of protected services can be different, depending on which option is used for SMP networks. Moreover, we propose a detailed design for the implementation of SMP by considering options and algorithms that are commonly needed for network nodes. A simulation shows the performance of an SMP system implemented with the proposed design and utilizing two options. The results demonstrate that resource utilization can be increased or protection switching time can be shortened depending on the option selected by the network administrator.

Dynamic Survivable Routing for Shared Segment Protection

  • Tapolcai, Janos;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.198-209
    • /
    • 2007
  • This paper provides a thorough study on shared segment protection (SSP) for mesh communication networks in the complete routing information scenario, where the integer linear program (ILP) in [1] is extended such that the following two constraints are well addressed: (a) The restoration time constraint for each connection request, and (b) the switching/merging capacity constraint at each node. A novel approach, called SSP algorithm, is developed to reduce the extremely high computation complexity in solving the ILP formulation. Basically, our approach is to derive a good approximation on the parameters in the ILP by referring to the result of solving the corresponding shared path protection (SPP) problem. Thus, the design space can be significantly reduced by eliminating some edges in the graphs. We will show in the simulation that with our approach, the optimality can be achieved in most of the cases. To verify the proposed formulation and investigate the performance impairment in terms of average cost and success rate by the additional two constraints, extensive simulation work has been conducted on three network topologies, in which SPP and shared link protection (SLP) are implemented for comparison. We will demonstrate that the proposed SSP algorithm can effectively and efficiently solve the survivable routing problem with constraints on restoration time and switching/merging capability of each node. The comparison among the three protection types further verifies that SSP can yield significant advantages over SPP and SLP without taking much computation time.

Hysteresis Current Control with Self-Locked Frequency Limiter for VSI Control (자기동조 주파수 제한기를 갖는 전압원 인버터의 히스테리시스 전류제어)

  • Choe, Yeon-Ho;Im, Seong-Un;Gwon, U-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.23-33
    • /
    • 2002
  • A hysteresis control is widely used to control output current of inverter. A hysteresis bandwidth is affected by system parameters such as source voltage, device on/off time, load inductance and resistance. The frequency limiter is used to protect switching devices overload. In the conventional hysteresis controller, a lock-out circuit with D-latch and timer is used to device protection circuit. But switching delay time and harmonic components are appeared in output current. In this paper the performance of lock-out circuit is tested, and new circuit for switching device fault protection is proposed ad it's performance is simulated.

Effects of Fast Neutron Irradiation on Switching of Silicon Bipolar Junction Transistor

  • Sung Ho Ahn;Gwang Min Sun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2023
  • Background: When bipolar junction transistors (BJTs) are used as switches, their switching characteristics can be deteriorated because the recombination time of the minority carriers is long during turn-off transient. When BJTs operate as low frequency switches, the power dissipation in the on-state is large. However, when BJTs operate as high frequency switches, the power dissipation during switching transients increases rapidly. Materials and Methods: When silicon (Si) BJTs are irradiated by fast neutrons, defects occur in the Si bulk, shortening the lifetime of the minority carriers. Fast neutron irradiation mainly creates displacement damage in the Si bulk rather than a total ionization dose effect. Defects caused by fast neutron irradiation shorten the lifetime of minority carriers of BJTs. Furthermore, these defects change the switching characteristics of BJTs. Results and Discussion: In this study, experimental results on the switching characteristics of a pnp Si BJT before and after fast neutron irradiation are presented. The results show that the switching characteristics are improved by fast neutron irradiation, but power dissipation in the on-state is large when the fast neutrons are irradiated excessively. Conclusion: The switching characteristics of a pnp Si BJT were improved by fast neutron irradiation.

A Study on the application of TVS for snubber (스너버 회로를 위한 TVS 소자의 활용 연구)

  • Lee Wan-Yun;Chung Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.227-230
    • /
    • 2002
  • The switching device in an inductive circuit is stressed by the over-voltage at the turn-off time. Thus if the peak value of the over-voltage is not properly limited, the switching device may be broken. Therefore, the snubber circuit should be added to protect the switching device from the over-voltage. The circuit designer must be familiar with the design of the snubber This paper tests the possibility that TVS instead of the conventional snubber can be applied to the protection circuit of the switching device without using the complicated design equations, and shows that the rating of TVS can be easily selected by considering only several parameters of TVS. The experimental results show the reduced switching voltage of the switching device at the turn-off time.

  • PDF

Dual Process Linear Protection Switching Method Supporting Node Redundancy (노드 이중화를 위한 이중 프로세스 선형 보호 절체 방법)

  • Kim, Dae-Ub;Kim, Byung Chul;Lee, Jae Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.26-37
    • /
    • 2016
  • The core technologies of the current transport network are OAM and protection switching to meet the sub-50ms protection switching time via a path redundancy when a link or node failure occurs. The transport networks owned by public network operators, central/local governments, and major enterprises are individually configured and managed with service resiliency in each own protected sub-network. When such networks are cascaded, it is also important to provide a node resiliency between two protected sub-networks. However, the linear protection switching in packet transport networks, such as MPLS-TP and Carrier Ethernet, does not define a solution of dual node interconnection. Although Ethernet ring protection switching covers the dual node interconnection scheme, a large amount of duplicated data frames may be flooded when a failure occurs on an adjacent (sub) ring. In this paper, we suggest a dual node interconnection scheme with linear protection switching technology in multiple protected sub-networks. And we investigate how various protected sub-network combinations with a proposed linear or ring protection process impact the service resiliency of multiple protected sub-networks through extensive experiments on link and interconnected node failures.

Protection Switching Methods for Point-to-Multipoint Connections in Packet Transport Networks

  • Kim, Dae-Ub;Ryoo, Jeong-dong;Lee, Jong Hyun;Kim, Byung Chul;Lee, Jae Yong
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.18-29
    • /
    • 2016
  • In this paper, we discuss the issues of providing protection for point-to-multipoint connections in both Ethernet and MPLS-TP-based packet transport networks. We introduce two types of per-leaf protection-linear and ring. Neither of the two types requires that modifications to existing standards be made. Their performances can be improved by a collective signal fail mechanism proposed in this paper. In addition, two schemes - tree protection and hybrid protection - are newly proposed to reduce the service recovery time when a single failure leads to multiple signal fail events, which in turn places a significant amount of processing burden upon a root node. The behavior of the tree protection protocol is designed with minimal modifications to existing standards. The hybrid protection scheme is devised to maximize the benefits of per-leaf protection and tree protection. To observe how well each scheme achieves an efficient traffic recovery, we evaluate their performances using a test bed as well as computer simulation based on the formulae found in this paper.

Design of An Electronic Starter Using PSpice Simulation (PSpice 시뮬레이션을 이용한 전자식 스타터의 설계)

  • 이동호;곽재영;여인선;정영춘
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.11-13
    • /
    • 1997
  • Abstract - An electronic starter using MOSFET has been designed to take advantage of ideal preheating and starting features which can extend the lifetime of fluorescent lamps. The preheating circuit of the developed electronic starter is consisted of four parts - afull-wave rectifier circuit, an FET switching circuit a timer circuit for the gate switching, and a circuit for end-of-life protection. The circuit is analyzed by using PSpice simulation, and is improved to give an appropriate starting-time through control of R-C time constant of the timer circuit. And the circuit is also provided with an end-of-life protection feature, which utilizes the negative resistance characteristics of a thermistor that is thermally linked to FET through a heatsink. This also protects the FET from any overheating problems. From the results of simulation it is possible to obtain an appropriate value on the starting time for proper ignition and also it is verified that the limit for resistance of the thermistor is dependant on the value of resistance is the timer circuit

  • PDF