• 제목/요약/키워드: protease production

검색결과 590건 처리시간 0.031초

음식물 쓰레기중의 단백질을 효과적으로 분해하는 신규 미생물의 분리 및 응용 (Isolation of new microorganisms which degrades the protein of a food garbage efficiently and its application)

  • 구경완;정용현;홍성희;오상훈;김동섭;전희진
    • 한국산학기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.342-348
    • /
    • 2005
  • 본 연구에서는 음식물쓰레기 중의 단백질 분해활성을 갖는 대사산물을 생산하는 신규 바실러스 속 PNV-1 균주를 분리하였고, 분리된 균주를 이용하여 한국형 음식물쓰레기 환경인 고염분, 극한 pH, 고농도의 미생물 생육 저해물질 등에 대한 내성정도를 측정하였다. 실험 결과, 분리된 바실러스 속 균주는 약 0.68 unit/ml 이상의 높은 단백질분해효소 활성을 보유하고 있으며, 음식물쓰레기 중에 형성되는 pH 4 내지 9 범위에서 생육이 가능하고, 염분농도 최고 $8\%$와 살균작용을 하는 것으로 알려진 고춧가루 $5\%$에서도 생육에 거의 영향이 없었다. 또한, 미생물 생육 저해물질로 알려진 후추와 겨자에 대한 내성을 나타내었다.

  • PDF

멸치액젓을 이용한 양조간장의 발효과정 중 이화학적 성분변화 (Changes in Physicochemical Components of Soy Sauce during Fermentation from Anchovy Sauce)

  • 강윤미;정순경;백현동;조성환
    • 한국식품영양과학회지
    • /
    • 제30권5호
    • /
    • pp.888-893
    • /
    • 2001
  • Soy sauce has a long history used as a food ingredient. However, hydrolyzed vegetable protein, mono-sodium glutamate, starch syrup, and fructose are added to soy sauce during fermentation for the taste and flavor of product. But consumers have been reluctant to the taste of these artificial additives. In this experiment, anchovy sauce was used to prepare soy sauce to enhance the quality and brine was used as a control. To evaluate the quality of soy sauce added with anchovy, total nitrogen (TN) and soluble nitrogen contents, total soild contents, total sugar reducing sugar. lactic acid content and protease activity were monitored during fer-mentation. Total microbial numbers and lactic acid bacteria were not significantly changed among the cases. Aerobic and anaerobic microorganisms. and lactic acid bacteria were not significantly changed among the cases we studied, For the total sensory test, it was also estimated that the cases using anchovy sauce were superior to the control. From the results mentioned above, we could obtain shorter fermenation period as well as the quality improvement in the case of using anchovy sauce instead of salty water in the fermented soy sauce production.

  • PDF

Isolation of a Lactococcus lactis Strain Producing Anti-staphylococcal Bacteriocin

  • Yang, Jung-Mo;Moon, Gi-Seong
    • 한국축산식품학회지
    • /
    • 제38권6호
    • /
    • pp.1315-1321
    • /
    • 2018
  • Bacteriocin is ribosomally synthesized by bacteria and inhibits closely related species. In this study we aimed at isolating lactic acid bacteria producing bacteriocin presenting anti-staphylococcal activity. A Lactococcus lactis strain was isolated from kimchi for the purpose and identified by 16S rRNA gene sequencing. As preliminary tests, optimal culture conditions, stabilities against heat, solvents, and enzymes treatments, and type of action (bacteriostatic or bactericidal) of the bacteriocin were investigated. The optimal culture conditions for production of the bacteriocin were MRS broth medium and $25^{\circ}C$ and $30^{\circ}C$ culture temperatures. The bacteriocin was acidic and the activity was abolished by a protease treatment. Its stability was maintained at $100^{\circ}C$ for 15 min and under treatments of various organic solvents such as methanol, ethanol, acetone, acetonitrile, and chloroform. Finally, the bacteriocin showed bactericidal action against Staphylococcus aureus where 200 AU/mL of the bacteriocin decreased the viable cell count (CFU/mL) of S. aureus by 2.5 log scale, compared with a control (no bacteriocin added) after 4-h incubation.

Thymol Rich Thymbra capitata Essential Oil Inhibits Quorum Sensing, Virulence and Biofilm Formation of Beta Lactamase Producing Pseudomonas aeruginosa

  • Qaralleh, Haitham
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.172-180
    • /
    • 2019
  • Infections with Pseudomonas aeruginosa are difficult to treat not only because it is often associated with multidrug-resistant infections but also it is able to form biofilm. The aim of this study was to evaluate the antibiofilm and anti-Quorum Sensing (QS) activities of Thymbra capitata essential oils (EOs) against Beta Lactamase (BL) producing P. aeruginosa and the reference strain P. aeruginosa 10145. GC/MS analysis showed that thymol (23.25%) is the most dominant compound in T. capitata EOs. The MICs of T. capitata EOs against P. aeruginosa (BL) and P. aeruginosa 10145 were 1.11%. At sub MIC (0.041, 0.014 and 0.0046%), the EOs of T. capitata remarkably inhibited the biofilm formation of both strains tested and complete inhibition of the biofilm formation was reported at 0.041%. The EOs of T. capitata were found to inhibit the swarming motility, aggregation ability and hydrophobic ability of P. aeruginosa (BL) and P. aeruginosa 10145. Interestingly, the EOs of T. capitata reduce the production of three secreted virulence factors that regulated by QS system including pyocyanin, rhamnolipids and LasA protease. The potent antibiofilm and anti-QS activities of T. capitata EOs can propose it as a new antibacterial agent to control pseudomonas infections.

Isolation, Characterization, and Metabolic Profiling of Ceratorhiza hydrophila from the Aquatic Plant Myriophyllum spicatum

  • Elsaba, Yasmin M.;Boroujerdi, Arezue;Abdelsalam, Asmaa
    • Mycobiology
    • /
    • 제50권2호
    • /
    • pp.110-120
    • /
    • 2022
  • The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.

12-Oxoeicosatetraenoic acid, a candidate signal for placenta separation, activates matrix metalloproteinase and induces apoptosis in bovine trophoblast cells

  • Hachiro Kamada
    • Animal Bioscience
    • /
    • 제36권3호
    • /
    • pp.429-440
    • /
    • 2023
  • Objective: 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-KETE), a metabolite of arachidonic acid, is a strong candidate signal for placenta separation following calf discharge at delivery. In the present study, the effects of 12-KETE on bovine trophoblast cells were investigated to determine its function in the placentome at delivery. Methods: Bovine trophoblast cells derived from blastocysts were used. They were cocultured with or without fibroblasts derived from bovine placentome and/or bovine uterine epithelial cells. 12-KETE was added to the culture medium. Results: Bovine trophoblast cells contained binucleate cells and strongly expressed caudal type homeobox 2 (CDX-2) genes. Addition of 12-KETE to the trophoblast cell colony without feeder cells or that on a fibroblast monolayer induced rapid exfoliation of the colony. After 12-KETE addition, trophoblast cells emitted strong fluorescence caused by the degradation of dye-quenched collagen, indicating that 12-KETE activated matrix metalloproteinase of the trophoblast cells. Exfoliated cell colonies were stained with YOPRO-1, but not propidium iodide (PI). Moreover, DNA fragmentation and Bcl-2 associated X protein (Bax) gene (apoptosis stimulator) upregulation were observed in exfoliated cells, indicating that 12- KETE induced trophoblast cell apoptosis. These results were consistent with previous in vivo observations; however, even a lower concentration of 12-KETE activated trophoblast protease. Meanwhile, fibroblasts derived from the bovine placentome converted arachidonic acid to 12-KETE. Conclusion: These observations indicate that 12-KETE may serve as a signal for placenta separation at delivery.

Effect of Solid-State Fermented Brown Rice Extracts on 3T3-L1 Adipocyte Differentiation

  • Su Bin Ji;Chae Hun Ra
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.926-933
    • /
    • 2023
  • Aspergillus oryzae KCCM 11372 was used to enhance the production of β-glucan using humidity control strategies. Under conditions of 60% humidity, solid-state fermentation (SSF) increased the yields of enzymes (amylase and protease), fungal biomass (ergosterol), and β-glucan. The maximum concentrations obtained were 14800.58 U/g at 72 h, 1068.14 U/g at 120 h, 1.42 mg/g at 72 h, and 12.0% (w/w) at 72 h, respectively. Moreover, the β-glucan containing fermented brown rice (β-glucan-FBR) extracts at concentrations of 25-300 ㎍/ml was considered noncytotoxic to 3T3-L1 preadipocytes. We then studied the inhibitory effects of the extracts on fat droplet formation in 3T3-L1 cells. As a result, 300 ㎍/ml of β-glucan-FBR extracts showed a high inhibition of 38.88% in lipid accumulation. Further, these extracts inhibited adipogenesis in the 3T3-L1 adipocytes by decreasing the expression of C/EBPα, PPARγ, aP2, and GLUT4 genes.

Potato Soft Rot Caused by Psychrotolerant Pseudomonas sp. from Subarctic Tundra Soil

  • Sungho Woo;Yung Mi Lee;Dockyu Kim
    • 식물병연구
    • /
    • 제29권4호
    • /
    • pp.399-404
    • /
    • 2023
  • Agricultural activities and the number of farms in the subarctic regions have been increasing annually after the coronavirus disease 2019 pandemic to achieve food self-sufficiency. Potatoes are vulnerable to soft rot bacteria at all stages of production, storage, and transportation. A novel bacterium, Pseudomonas sp. N3-W, isolated from Alaska tundra soil, grows at 5-25℃ and produces extracellular protease(s). N3-W caused necrotic spots (hypersensitivity) in hot pepper leaves and soft rot disease (pathogenicity) in potato tubers. The psychrotolerant N3-W caused significant soft rot symptoms on potatoes at a broad temperature range (5℃, 15℃, and 25℃). In contrast, mesophilic Pectobacterium carotovorum KACC 16999 induced severe rotting symptoms in potatoes at their optimal growth temperature of 15℃ and 25℃. However, it barely produced symptoms at 5℃, which is the appropriate storage and transportation temperature for potatoes. The results of pathogenicity testing imply that psychrotolerant soft rot pathogens from polar regions may cause severe soft rot not only during the crop growing season but also during storage and transportation. Our study indicates the possibility of new plant pathogen emergence and transmission due to the expansion of crop cultivation areas caused by permafrost thawing in response to recent polar warming.

Biocontrol of Orchid-pathogenic Mold, Phytophthora palmivora, by Antifungal Proteins from Pseudomonas aeruginosa RS1

  • Sowanpreecha, Rapeewan;Rerngsamran, Panan
    • Mycobiology
    • /
    • 제46권2호
    • /
    • pp.129-137
    • /
    • 2018
  • Black rot disease in orchids is caused by the water mold Phytophthora palmivora. To gain better biocontrol performance, several factors affecting growth and antifungal substance production by Pseudomonas aeruginosa RS1 were verified. These factors include type and pH of media, temperature, and time for antifungal production. The results showed that the best conditions for P. aeruginosa RS1 to produce the active compounds was cultivating the bacteria in Luria-Bertani medium at pH 7.0 for 21 h at $37^{\circ}C$. The culture filtrate was subjected to stepwise ammonium sulfate precipitation. The precipitated proteins from the 40% to 80% fraction showed antifungal activity and were further purified by column chromatography. The eluted proteins from fractions 9-10 and 33-34 had the highest antifungal activity at about 75% and 82% inhibition, respectively. SDS-PAGE revealed that the 9-10 fraction contained mixed proteins with molecular weights of 54 kDa, 32 kDa, and 20 kDa, while the 33-34 fraction contained mixed proteins with molecular weights of 40 kDa, 32 kDa, and 29 kDa. Each band of the proteins was analyzed by LC/MS to identify the protein. The result from Spectrum Modeler indicated that these proteins were closed similarly to three groups of the following proteins; catalase, chitin binding protein, and protease. Morphological study under scanning electron microscopy demonstrated that the partially purified proteins from P. aeruginosa RS1 caused abnormal growth and hypha elongation in P. palmivora. The bacteria and/or these proteins may be useful for controlling black rot disease caused by P. palmivora in orchid orchards.

형질전환 벼 현탁세포 배양에서 혼합효율과 조정배지가 hCTLA4Ig 생산에 미치는 영향 (Effects of Mixing Performance and Conditioned Medium on hCTLA4Ig Production in Transgenic Rice Cell Suspension Cultures)

  • 최홍열;박준용;남형진;공미경;유예리;김동일
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.307-312
    • /
    • 2015
  • Transgenic rice cells using RAmy3D promoter can provide high productivity, and the production of recombinant protein is induced by sugar starvation. In this system, productivity was reduced during the scale-up processes. To ensure the influences of shear stress and oxygen transfer rate, working volume and mixing performances were investigated under various agitation speeds and working volumes. In addition, inoculation methods including suspended cells and filtered cells were compared. Working volumes and shaking speeds were 300, 450 mL and 80, 120 rpm, respectively. Hydrodynamic environment of each condition was measured numerically like mixing time and $k_La$. Good mixing performance and high shear stress were measured at high agitation speed and low volume. The highest level of hCTLA4Ig was 30.7 mg/L at 120 rpm, 300 mL. When conditioned medium was used for inoculation, increased cell growth was noticed during the day 0~4 and decreased slower than filtered cells. Compared with filtered cells, the maximum hCTLA4Ig level reached 37.8 mg/L at 120 rpm, 300 mL and lower protease activity level was observed. In conclusion mixing performance is critical factor for productivity and conditioned medium can have a positive effect on damaged cells caused by hydrodynamic shear stress.