• Title/Summary/Keyword: prosthetics

Search Result 208, Processing Time 0.023 seconds

The effect of biomechanical isokinetic excercise of residual muscles in the stump on restoring gait of transfemoral and transtibial amputees (하지절단자의 보행 복원을 위한 단단부 잔존근육의 생체역학적 등속성 운동 효과에 대한 연구)

  • 홍정화;송창호;이재연;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.723-728
    • /
    • 2003
  • The physical restoration technology for lower limb amputees is being advanced as the biomechatronics is being applied to the area of rehabilitation. As the advanced prosthetics for lower limb amputees are introduced, a suitable prescription of biomechanical rehabilitation training becomes important to utilize the advanced full features of the devices. Since lower limb amputation significantly affects biomechanical balance of mosculoskeletal system for gait, an appropriate and optimal biomechanical training and exercise should be provided to rebalance the system before wearing the prostheses. Particularly, biomechanical muscular training for hip movements in the both affected and sound lower limbs is important to achieve a normal-like ambulation. However, there is no study to understand the effect of hip muscle strength on the gait performance of lower limb amputees. To understand the hip muscle strength characteristics for normal and amputated subjects, the isokinetic exercises for various ratios of concentric contraction to eccentric contraction were performed for hip flexion-extension and adduction-abduction. As a results. biomechanical isokinetic training protocols and performance measurement methodologies for lower limb amputees were developed in this study. Using the protocols and measurement methods, it has been understood that the appropriate and optimal biomechanical prescription for the rehabilitation process for lower limb amputees is important for restoring their gait ability

  • PDF

Development and Evaluation of a New Gait Phase Detection System using FSR Sensors and a Gyrosensor (저항센서와자이로센서를이용한새로운보행주기검출시스템의개발및평가)

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.196-203
    • /
    • 2004
  • In this study, a new gait phase detection system using both FSR(Force Sensing Resister) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the posterior aspect of a shoe. An algorithm was also developed to determine eight different gait transitions among four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was compared with the conventional gait phase detection system using only FSR sensors in various gait experiments such as level walking, fore-foot walking and stair walking. In fore-foot walking and stair walking, the developed system showed much better accuracy and reliability to detect gait phases. The developed gait phase detection system using both FSR sensors and a gyrosensor will be helpful not only to determine pathological gait phases but to apply prosthetics, orthotics and functional electrical stimulation to patients with gait disorders.

Sedative and Antinociceptive Properties of Lindera obtusiloba

  • Lee, Yong Jae;Lee, Dong Keon;Kim, Jong Soo;Park, Kyoung Jae;Cha, Dong Seok;Kim, Dae Keun;Kwon, Jin;Oh, Chan Ho;Kim, Kang San;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.215-220
    • /
    • 2012
  • The stem of Lindera obtusiloba (Lauraceae), has been widely used as a traditional medicine for the treatment of abdominal pain, bruise and hepatocirrhosis. In the present study, antinociceptive and sedative properties of the methanol extract of L. obtusiloba (MLO) were evaluated. MLO demonstrated strong and dose-dependent antinociceptive activities on various experimental pain models including thermal nociception and chemical nociception, compared to tramadol and indomethacin, reference drugs. In combination test using naloxone, the diminished analgesic activity of MLO was observed, indicating the relation with opioid receptor. Moreover, MLO also decreases pentobarbital-induced sleep latency and increases sleeping time suggesting its hypnotic and sedative action. The present results indicate that MLO could be used as valuable antinociceptive and sedative agent for the treatment of various diseases.

Anti-nociceptive Properties of Ribes fasciculatum

  • Kim, Jin Kyu;Im, Jun Sang;Kim, Bong Seok;Cha, Dong Seok;Kwon, Jin;Oh, Chan Ho;Ma, Sang Yong;Yu, Ju Hee;Nam, Jung Il;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.311-315
    • /
    • 2013
  • Ribes fasciculatum (Saxifragaceae) has been widely used as a traditional medicine for the treatment of cough, antidote, cold, lacquer poison, and sore throat. In the present study, we evaluated the anti-nociceptive effects of ethyl acetate fraction of Ribes fasciculatum (ERF) in mice. Test results of tail-immersion test and hot plate test revealed that the ERF had strong anti-nociceptive activities on thermal nociception in a dose dependent manner, indicating ERF's anti-nociception on the central pain. Moreover, the acetic acid-induced chemical nociception was also significantly reduced by ERF treatment. This result shows that ERF may also work on the peripheral pain. We further performed formalin test to confirm ERF's anti-nociceptive properties and found that pain responses were significantly decreased by ERF treatment. Interestingly, in the combination test with naloxone, the analgesic activity of ERF was not changed, indicating that the opioid receptor was not involved in the ERF-mediated anti-nociception. These results indicate that ERF might be possibly used as a painkiller for the treatment of nociceptive pains.

Development of a Haptic System for Grasp Force Control of Underactuated Prosthetics Hands (과소 구동 전동의수의 파지력 제어를 위한 햅틱 시스템 개발)

  • Lim, Hyun Sang;Kwon, Hyo Chan;Kim, Kwon Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.415-420
    • /
    • 2017
  • Underactuated prosthetic hands are relatively light and economical. In this work, an economical grasping force control system is proposed for underactuated prosthetic hands with adaptive grasp capability. The prosthetic hand is driven by a main cable based on a set of electromyography sensors on the forearm of a user. Part of the main cable tension related to grasping force is fed back to the user by a skin-mounted vibrator. The proper relationship between the grasping force and the vibrator drive voltage was established and prototype tests were performed on a group of users. Relatively accurate grasping force control was achieved with minimal training of users.

The effect of preheat treatment on ceramic to metal bond strength (도재-금속의 결합 강도에 미치는 비금속 합금의 열처리 효과)

  • Kim, Chi-Young;Kim, Young-Gon; Cho, Hyun-Seol
    • Journal of Technologic Dentistry
    • /
    • v.24 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • In dental prosthetics, the application of metal-ceramic restorations has steadily increased since their introduction. This is due to excellent esthetics in combination with high mechanical stability. In order to optimum bond strength between metal and ceramics, controlled oxidation of metal substructure is essential factor. Beryllium containing and beryllium free Ni-Cr alloys for metal-ceramic restorations were evaluated for the metal-ceramic bond strength by changing heat treatment for oxide formation. A mechanical three-point bending test was employed to evaluate the interfacial bond strength of metal-ceramic. In each metal, plate type specimens were used for mechanical three-point bending test. With Ni-Cr alloys for metal ceramics, mechanical three-point bending test showed that double degassing was more available preheat treatment method than another. It was found that beryllium containing Ni-Cr alloys are more effective than beryllium-free for metal-ceramic bond strength.

  • PDF

Effect of Orostachys japonicus A. Berger on Apoptosis Induction of Human Leukemia HL60 Cells (와송의 HL60백혈병세포의 Apoptosis유도 효과)

  • Oh, Chan-Ho;Bae, Jin-Beom;Kim, Nam-Seok;Jeon, Hoon;Han, Kwang-Soo;Lee, Moon-Jun;Kwon, Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.2
    • /
    • pp.118-122
    • /
    • 2009
  • Methanol extracts of Orostachys japonicus A. Berger (OAB) were found to exhibit apoptosis induction of HL60 human acute promyelocytic leukemia cells. Treatment of OAB exerted strong cytotoxicity against HL60 cells. OAB induced DNA fragmentation of HL60 cells in a dose dependent manner. Nitric oxide production were also increased in OAB-treated RAW264.7 macrophage cell lines. Treatment of OAB increased the expression of p53 and iNOS gene and the expression of p53, $NF-{\kappa}B$ and iNOS protein in cultured HL60 and RAW264.7 cells. These results suggest that OAB are effective on strong anti-cancer properties and can be useful as a chemo-preventive agents.

Clinical Feasibility of Wearable Robot Orthosis on Gait and Balance Ability for Stroke Rehabilitation: A Case Study

  • Shin, Young-Il;Yang, Seong-Hwa;Kim, Jin-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.124-127
    • /
    • 2015
  • Purpose: The emphasis on gait rehabilitation after stroke depends on training support through the lower limbs, balance of body mass over the changing base of support. However, muscle weakness, lack of control of lower limb, and poor balance can interfere with training after stroke. For this case study report, a wearable robot orthosis was applied to stroke patients in order to verify its actual applicability on balance and gait ability in the clinical field. Methods: Two stroke patients participated in the training using the wearable robot orthosis. Wearable robot orthosis provides patient-initiated active assistance contraction during training. Training includes weight shift training, standing up and sitting down, ground walking, and stair up and down Training was applied a total of 20 times, five times a week for 4 weeks, for 30 minutes a day. Gait ability was determined by Stance phase symmetry profile, Swing phase symmetry profile, and velocity using the GAITRite system. Balance ability was measured using the Biodex balance system. Results: Subjects 1, 2 showed improved gait and balance ability with mean individual improvement of 72.4% for velocity, 19.4% for stance phase symmetry profile, 9.6% for swing phase symmetry profile, and 13.6% for balance ability. Conclusion: Training utilizing a wearable robot orthosis can be useful for improvement of the gait and balance ability of stroke patients.

A Study on Assistive Technology for Pediatric Therapists (소아물리치료사와 소아작업치료사의 보조공학 활용 수준 및 자신감)

  • Kim, Kyoung-A;Jeong, Dong-Hoon
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Purpose: This study sought to identify the utilization and confidence in assistive technology (AT) for pediatric physical therapists (PPTs) and pediatric occupational therapists (POTs) for the purpose of improving the utilization of AT in clinics. Methods: The subjects of this study were 167 therapists (98 PPTs and 69 POTs) who work at general hospitals, welfare centers, facilities for the disabled, and special education schools in Seoul and Gyeonggi province. The frequency analysis and chi-squared test were used. Results: This study found that both PPTs and POTs recognize that AT benefits infants with disabilities; however, they show low confidence in using AT. Applications of AT are concentrated on wheelchairs for mobility and assistance with seating position, with orthotics/prosthetics for both purposes. POTs were found to use a wider variety of AT devices. While both PPTs and POTs frequently select/recommend devices, both groups are less involved with delivery methods, manufacture of devices, and education on AT use. Conclusion: These findings show the actual conditions of utilization and confidence in AT of PPTs and POTs deeply involved with AT, and emphasize that AT training is essential for pediatric treatment by comparing domestic and foreign studies.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.