• Title/Summary/Keyword: prostaglandin E2 (PGE2)

Search Result 125, Processing Time 0.023 seconds

THE CONCENTRATIONS OF PROSTAGLANDIN E2, 6-KETO-PROSTAGLANDIN F1α, AND LEUKOTRIENE B4 IN PULPAL AND PERIAPICAL LESIONS (치수 및 치근단병소에서 Prostaglandin E2, 6-keto-Prostaglandin F1α, Leukotriene B4의 분포에 관한 연구)

  • Shon, Won-Jun;Baek, Seung-Ho;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2000
  • Prostaglandins (PGs) and Leukotrienes (LTs) have been implicated in the genesis of pulpal and periapical inflammation. In this study, the relationships among $PGE_2$, 6-keto-PG $F_1{\alpha}$ (a stable metabolite of $PGI_2$) and $LTB_4$ concentrations in inflamed pulp and periapical lesions were discussed. Pulp tissue were obtained in routine endodontic treatment and periapical lesions in periapical surgery after clinical diagnoses were made. These specimens were divided into four groups as normal pulp group (Control group), acute pulpitis group, chronic pulpitis group, and periapical lesion group. Pulp tissue and periapical lesions were stored in liquid nitrogen. The concentration of $PGE_2$, $PGI_2$ and $LTB_4$ were measured with ELISA. The data were analyzed by one-way ANOVA. Significantly higher levels of $PGE_2$, 6-keto-PG $F_1{\alpha}$ a and $LTB_4$ were found in acute pulpitis group than chronic pulpitis group and periapical lesion group(p<0.05). Periapical lesion group showed significantly higher mean concentrations of $PGE_2$ and $LTB_4$ than chronic pulpitis group. In control and chronic pulpitis group, significant higher levels of $PGI_2$ than $PGE_2$ and $LTB_4$ were found. These results suggested that the high levels of $PGE_2$ and $LTB_4$ in periapical lesions may be due to rich endothelium., fibroblast and lymphocyte known as the main producers of $PGE_2$ and $LTB_4$. $PGI_2$ may be thought to one of the most abundant PGs in normal pulp tissue.

  • PDF

Inhibitory effects of ethanol extract from Vicia amoena on LPS(Lipopolysaccharide) induced nitric oxide and prostaglandin E2 production in RAW264.7 macrophage cell (갈퀴나물 에탄올 추출물의 RAW264.7 대식세포에서 LPS(Lipopolysaccharide)로 유도된 nitric oxide 및 prostaglandin E2 생성 저해효과)

  • Nam, Jung-Hwan;Park, Soo-Jin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.443-450
    • /
    • 2019
  • Vicia amoena has traditionally been used to treat disease of rheumatism, arthralgia, muscular paralysis, abscess and eczema, and it has anti-inflammatory properties. However, validity of the anti-inflammatory activity has not been scientifically in vestige acted so far. Therefore, the aim of this study was to investigate the anti-inflammatory potential of V. amoena using the ethanolic extract. To evaluate the anti-inflammatory effects, we examined the inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) on RAW264.7 cells. Our results indicated that ethanolic extract of V. amoena significantly inhibited the LPS-induced NO and PGE2 production in RAW264.7 cells. The ethanolic extract of V. amoena has inhibited the PGE2 production by 88.0±0.8 % at the concentration of 40㎍/ml. This results showed that ethanol extract of V. amoena is expected to be a good candidate for development into source of inflammation inhibitor

Evaluation of cyclooxygenase (COX) inhibition in rosemary extract (로즈마리 추출물의 cyclooxygenase (COX) 효소 및 유전자 발현에 미치는 영향)

  • Sehee Lee;Soo-yeon Park;Kyeong Jin Kim;Sonwoo Kim;Yanghoon P. Jung;Ji Yeon Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.114-121
    • /
    • 2023
  • Selective cyclooxygenase (COX)-2 inhibition is a novel strategy to reduce the risk of gastrointestinal side effects caused by conventional nonsteroidal anti-inflammatory drugs. However, some selective COX-2 inhibitors have become apparent to increase the risk of severe cardiovascular disease. The aim of this study was to examine the anti-inflammatory effect of rosemary extract (RE) and confirm the safety of cardiovascular side effects. Inhibition of COX enzyme activity was assessed, and the levels of COX-2 and prostaglandin E2 (PGE2) and COX-1 and thromboxane B2 (TXB2) were evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. The 40% RE group showed increased COX-2 inhibition activity in a dose-dependent manner, whereas the 50% RE group only exhibited at 100 ㎍/mL. In a cell-based study, COX-2 mRNA expression was similar in both RE groups and PGE2 levels tended to decrease in the 40% RE group compared to the LPS group in the LPS pretreatment condition. In the LPS posttreatment condition, the COX-2 mRNA expression decreased in the 40% RE group, and PGE2 levels were increased in the 40 and 50% RE groups. In both conditions, there was no significant difference in COX-1 and TXB2 levels. In conclusion, 40 and 50% RE showed significant COX-2 inhibition, similar to the positive control group. It was confirmed that the inhibition of the COX-2 expression, but the effect did not affect the balance between prostacyclin and TXB2. These results indicate that rosemary showed COX-2 inhibition activity with a low risk of cardiovascular diseases.

Prostaglandin E2 Up-regulation and Wound Healing Effect of the Ethanol Extract of Eriobotryae Folium in Human Keratinocyte (피부 각질세포에 대한 비파엽 에탄올 추출물의 PGE2 조절 작용과 상처치료 효과)

  • Im, Do Youn;Lee, Kyoung In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.457-462
    • /
    • 2014
  • Prostaglandin (PG) $E_2$ is an important mediator of skin wound healing without excessive scarring and gastric ulcer healing. However, $PGE_2$ has a short lifetime in vivo because it is metabolized rapidly by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Ethanol extract of Eriobotryae folium (EFEE) elevated intracellular and extracellular $PGE_2$ levels in HaCaT cells and inhibited 15-PGDH ($ED_{50}$ : $168.4{\mu}g/mL$) with relatively low cytotoxicity ($IC_{50}$ : $250.0{\mu}g/mL$). Real-time PCR analysis showed that mRNA expression of cyclooxygenase (COX)-1 and COX-2 enzymes were increased and prostaglandin transporter (PGT) was decreased in HaCaT cells by EFEE. Moreover, wound healing effect of EFEE ($168.4{\mu}g/mL$) was comparable to that of TGF-${\beta}1$ (300 pg/mL) as a positive control. These results demonstrate that EFEE may be valuable therapeutic materials for the treatment of $PGE_2$ level dependent diseases.

Prostaglandin synthase activity of sigma- and mu-class glutathione transferases in a parasitic trematode, Clonorchis sinensis

  • Jiyoung Kim;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 ㎛ for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 ㎛). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.

Simultaneous Determination of Prostaglandin E1 and Prostaglandin E1 Ethyl Ester in Hairless Mouse Skin Homogenate by High-Performance Liquid Chromatography

  • Choi, Han-Gon;Kim, Ji-Hyun;Li, Dong-Xun;Piao, Ming-Guan;Kwon, Tae-Hyub;Woo, Jong-Soo;Choi, Young-Wook;Yoo, Bang-Kyu;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.375-381
    • /
    • 2005
  • A rapid and specific high-performance liquid chromatographic method was developed and validated for the simultaneous determination of prostaglandin $E_{1}\;(PGE_{1})$ and prostaglandin $E_{1}$ ethyl ester $(PGE_{1}-EE)$ in hairless mouse skin homogenate. The sample treatment procedure involved deproteination and precipitation by acetonitrile. $PGE_{1}$ and $PGE_{1}-EE$ in supernatant were separated in a reversed-phase C18 column without being interfered by other components present in hairless mouse skin homogenate. 9-Anthracenecarboxylic acid was used as an internal standard. The retention times of $PGE_{1}$, 9-anthracenecarboxylic acid and $PGE_{1}-EE$ were, 4.5, 9.5 and 18.0 min, respectively. The assay showed linearity from 1 to $40\;{\mu}g/ml$ for both $PGE_{1}$ and $PGE_{1}-EE$. Precision expressed as RSD ranged from 2.3 to 14.1 % for $PGE_{1}$ and 1.6 to 11.0% for $PGE_{1}-EE$. Accuracy ranged from 100.5 to 119.6 % for $PGE_{1}$ and from 98.0 to 103.7% for $PGE_{1}-EE$. This method was employed successfully to follow the time course of concentrations of $PGE_{1}$ and $PGE_{1}-EE$ in hairless mouse skin homogenate for stability study.

Inhibitory effect of broccoli leaf extract on PGE2 production by NF-κB inhibition (NF-κB 저해를 통한 브로콜리 잎 추출물의 PGE2 저해효과)

  • Park, Sook Jahr;An, Iseul;Noh, Gyu Pyo;Yoo, Byung Hyuk;Lee, Jong Rok
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.117-124
    • /
    • 2019
  • Objective : Broccoli is edible green plant that has a wide variety of health benefits including cancer prevention and cholesterol reduction. However, leaves of broccoli are not eaten and are mostly left as waste. This study was conducted to evaluate the effects of the broccoli leaf extract (BLE) on prostaglandin E2 (PGE2) production related to nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-activated macrophages. Methods : BLE was prepared by extracting dried leaf with ethanol. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PGE2 and inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Expression level of each protein was monitored by Western blot analysis. Results : In LPS-activated Raw264.7 cells, PGE2 release into culture medium was dramatically enhanced compared to control cells. However, increased PGE2 was attenuated dose-dependently by treatment with BLE. Inhibition of PGE2 production by BLE was due to the suppression of cyclooxygenase-2 (COX-2) expression determined by Western blot analysis. BLE also inhibited the production of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Inhibition at PGE2 and cytokine was mediated from inhibition of nuclear translocation of NF-κB due to the repression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation. Conclusion : This study showed that BLE exerted inhibitory activities against PGE2, which is critical for the initiation and resolution of inflammatory responses, and that inhibition of PGE2 was mediated by suppression of NF-κB signaling. These results suggest that the waste broccoli leaves could be used for controlling inflammation.

Effect of Zhongyi paste on inflammatory pain in mice by regulation of the extracellular regulated protein kinases 1/2-cyclooxygenase-2-prostaglandin E2 pathway

  • Xiao, Ailan;Wu, Chuncao;Kuang, Lei;Lu, Weizhong;Zhao, Xin;Kuang, Zhiping;Hao, Na
    • The Korean Journal of Pain
    • /
    • v.33 no.4
    • /
    • pp.335-343
    • /
    • 2020
  • Background: Zhongyi paste is a traditional Chinese medicine herbal paste that is externally applied to reduce inflammation and relieve pain. Methods: An acute foot swelling inflammation model in C57BL/6J mice was established by carrageenan-induced pathogenesis. Zhongyi paste raised the pain threshold and also reduced the degree of swelling in mice with carrageenan-induced foot swelling. Results: Analysis indicated that serum tumor necrosis factor-alpha, interleukin-1 beta, and prostaglandin E2 (PGE2) cytokine levels and PGE2 levels in the paw tissue of the mice were decreased by Zhongyi paste treatment. The quantitative polymerase chain reaction and western blot results showed that Zhongyi paste downregulated the mRNA and protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2), and cyclooxygenase-2 (COX-2), and also downregulated the mRNA expression of PGE2. At the same time, the Zhongyi paste exerted a stronger effect as an external drug than that of indomethacin, which is an oral drug, and voltaren, which is an externally applied drug. Conclusions: Our results indicated that Zhongyi paste is a very effective drug to reduce inflammatory swelling of the foot, and its mechanism of action is related to regulation of the ERK1/2-COX-2-PGE2 pathway.

Anti-inflammatory Effect of Ishige foliacea in RAW 264.7 Cells (넓패추출물에 의한 RAW 264.7 세포에서의 항염효과)

  • Joonghyun Shim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • This study was carried out to identify the anti-inflammatory effects of Ishige foliacea (I. foliacea) extract on skin using RAW 264.7 cells. The anti-inflammatory effects of I. foliacea extract on RAW 264.7 cells were assessed by cell viability assay, mRNA expressions, and nitric oxide (NO)/prostaglandin E2 (PGE2) productions. The anti-inflammatory effects of I. foliacea extract were elucidated by analysis of IL-1α/IL-1β/IL-6/TNFα gene expressions and PGE2/NO production. Quantitative real-time polymerase chain reaction showed that I. foliacea extract decreased the gene expression levels of iNOS/COX2/IL-1α/IL-1β and IL-6. Furthermore, PGE2/NO production also revealed that I. foliacea extract exhibited anti-inflammatory properties. These results suggest that I. foliacea extract is an anti-inflammatory compound. It could be a potent cosmeceutical material for anti-inflammatory effects. Further studies on the anti-inflammatory mechanisms of broadleaf extracts are expected to help identify pharmacological mechanisms related to inflammation in addition to cosmeceuticals.

External Lyogel Formulation of Prostaglandin E1 Ethyl Ester (프로스타글란딘 E1 에칠에스테르의 외용 리오겔 제제 설계)

  • Yang, Sung-Woon;Lee, Jin-Kyo;Lee, Ji-Eun;Kim, Hee-Kyu;Park, Hye-Sook;Kim, Jong-Seok;Choi, Han-Gon;Yong, Chul-Soon;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • External lyogels containing prostaglandin $E_1$ ethyl ester $(PGE_1-EE)$, a prodrug of prostaglandin $E_1\;(PGE_1)$ as a therapeutic agent for erectile dysfunction, were formulated to overcome the aqueous instability and enhance the percutaneous absorption. Lyogels of $PGE_1-EE$ were prepared with ethanol (EtOH)/proplyene glycol (PG) cosolvent system as a vehicle, cineol as an enhancer, and hydroxypropylcellusose as a gelling agent. In vitro percutaneous absorption studies were performed to determine the rate of $PGE_1$ absorption through rat or hairless mouse skin. The permeability of $PGE_1-EE$ lyogel with enhancer was 16-fold greater than that of lyogel without enhancer. Cosolvent produced 9-fold increase in percutaneous absorption. Pharmacodynamic effects of lyogels were evaluated in mature male cats in terms of intracavernosal pressure (ICP). Lyogels containing 0.1 % of $PGE_1-EE$ showed higher ICP compared to intraurethral preparation of $PGE_1$ (1 %) and enhancer-free control lyogel. The shelf-life $(t_{10%})$ of lyogel at refrigerated condition $(4^{\circ}C)$ was calculated as 928 days, which is 4.2 times longer than that of control hydrogel. As a result, $PGE_1-EE$ was formulated successfully to a lyogel system with a selective enhancer and cosolvent system for the topical delivery of $PGE_1$.