DOI QR코드

DOI QR Code

Evaluation of cyclooxygenase (COX) inhibition in rosemary extract

로즈마리 추출물의 cyclooxygenase (COX) 효소 및 유전자 발현에 미치는 영향

  • Sehee Lee (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Soo-yeon Park (Department of Food Science and Technology, Seoul National University of Science and Technology) ;
  • Kyeong Jin Kim (Department of Nano Bio Engineering, Seoul National University of Science and Technology) ;
  • Sonwoo Kim (CJ CheilJedang Food & Nutrition Tech) ;
  • Yanghoon P. Jung (CJ CheilJedang Food & Nutrition Tech) ;
  • Ji Yeon Kim (Department of Food Science and Technology, Seoul National University of Science and Technology)
  • Received : 2023.01.31
  • Accepted : 2023.03.10
  • Published : 2023.12.31

Abstract

Selective cyclooxygenase (COX)-2 inhibition is a novel strategy to reduce the risk of gastrointestinal side effects caused by conventional nonsteroidal anti-inflammatory drugs. However, some selective COX-2 inhibitors have become apparent to increase the risk of severe cardiovascular disease. The aim of this study was to examine the anti-inflammatory effect of rosemary extract (RE) and confirm the safety of cardiovascular side effects. Inhibition of COX enzyme activity was assessed, and the levels of COX-2 and prostaglandin E2 (PGE2) and COX-1 and thromboxane B2 (TXB2) were evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. The 40% RE group showed increased COX-2 inhibition activity in a dose-dependent manner, whereas the 50% RE group only exhibited at 100 ㎍/mL. In a cell-based study, COX-2 mRNA expression was similar in both RE groups and PGE2 levels tended to decrease in the 40% RE group compared to the LPS group in the LPS pretreatment condition. In the LPS posttreatment condition, the COX-2 mRNA expression decreased in the 40% RE group, and PGE2 levels were increased in the 40 and 50% RE groups. In both conditions, there was no significant difference in COX-1 and TXB2 levels. In conclusion, 40 and 50% RE showed significant COX-2 inhibition, similar to the positive control group. It was confirmed that the inhibition of the COX-2 expression, but the effect did not affect the balance between prostacyclin and TXB2. These results indicate that rosemary showed COX-2 inhibition activity with a low risk of cardiovascular diseases.

선택적 cyclooxygenase (COX)-2 억제제는 기존의 비스테로이드성 소염제의 위장 부작용을 줄일 수 있는 새로운 대체제이다. 하지만, 최근 혈전을 일으켜 심혈관 질환의 위험을 증가시킨다는 보고가 있다. 따라서 본 연구에서는 유효성분인 ursolic acid를 각각 40, 50%로 극대화한 로즈마리 추출물(RE)의 항염증 효과와 이에 따른 심혈관 부작용의 안전성을 확인하였다. RE의 COX 효소 활성 저해 평가 결과 40, 50% RE는 100 ㎍/mL에서 양성 대조군인 celecoxib 및 rofecoxib와 비슷한 COX-2 저해 활성을 보였고, COX-1 저해 활성은 미미하였다. 이후 Lipopoly-saccharide (LPS)를 조건에 따라 처리한 RAW 264.7 세포에 40, 50% RE 1 ㎍/mL를 처리하여 COX-2, COX-1 유전자 발현, 세포 배양액의 prostaglandin E2 (PGE2), thromboxane B2 (TXB2) 농도를 확인하였다. 실험 결과 COX-2 유전자 발현은 40% RE가 LPS를 24시간 후처리한 조건에서 감소하였고, 40, 50% RE는 COX-1 유전자 발현 및 PGE2, TXB2 농도에는 유의한 영향을 주지 않는 것으로 확인되었다. 따라서 RE는 혈전 생성에 관여하는 prostaglandins의 균형에 영향을 주지 않아 심혈관 혈전 생성의 위험성이 적을 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 CJ제일제당의 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. Ngo SNT, Williams DB, Head RJ (2011) Rosemary and Cancer Prevention: Preclinical Perspectives. Crit Rev Food Sci Nutr 51: 946-954. doi: 10.1080/10408398.2010.490883
  2. Loussouarn M, Krieger-Liszkay A, Svilar L, Bily A, Birtic S, Havaux M (2017) Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiol 175: 1381-1394. doi: 10.1104/pp.17.01183
  3. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49: 57-68. doi: 10.1016/0378-8741(95)90032-2
  4. Huang M-T, Ho C-T, Wang ZY, Ferraro T, Lou Y-R, Stauber K, Ma W, Georgiadis C, Laskin JD, Conney AH (1994) Inhibition of Skin Tumorigenesis by Rosemary and Its Constituents Carnosol and Ursolic Acid. Cancer Res 54: 701-708
  5. Borras-Linares I, Stojanovic Z, Quirantes-Pine R, Arraez-Roman D, Svarc-Gajic J, Fernandez-Gutierrez A, Segura-Carretero A (2014) Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci 15: 20585-20606. doi: 10.3390/ijms151120585
  6. ZANNOU O, IPEKCI B, Ilkay K, ODABAS HI (2022) Assessing ursolic acid contents of some commonly consumed herbs grown in Turkey. Gumushane universitesi Fen Bilimleri Dergisi 12: 301-308. doi:10.17714/gumusfenbil.931509
  7. Lee E, Lee J, Han H (2015) Drug-induced cardiovascular disorders. J Med Life Sci 12: 20-22. doi: 10.3390/ijms151120585
  8. Pairet M, Engelhardt G (1996) Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fundam Clin Pharmacol 10: 1-15. doi: 10.1111/j.1472-8206.1996.tb00144.x
  9. Donnelly M, Hawkey C (1997) COX-II inhibitors-a new generation of safer NSAIDs? Aliment Pharmacol Ther 11: 227-235. doi: 10.1046/j.1365-2036.1997.154330000.x
  10. Kim D, Sung Y-K (2016) New COX-2 Inhibitors. Korean J Med 91:250-256
  11. Rainsford KD (1999) Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am J Med 107: 27S-35S; discussion 35S-36S. doi: 10.1016/S0002-9343(99)00365-4
  12. Mukherjee D (2002) Selective cyclooxygenase-2 (COX-2) inhibitors and potential risk of cardiovascular events. Biochem Pharmacol 63: 817-821. doi: 10.1016/S0006-2952(02)00842-0
  13. Iadecola C, Gorelick PB (2005) The Janus face of cyclooxygenase-2 in ischemic stroke: shifting toward downstream targets. Stroke 36: 182-185. doi: 1 0.1161/01.STR.0000153797.33611.d8 https://doi.org/10.1161/01.STR.0000153797.33611.d8
  14. Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94: 57-63. doi: 10.1016/0022-1759(86)90215-2
  15. Park M-G, Yoo J-D, Lee K-H (2020) Current Guidelines for NonSteroidal Anti-Inflammatory Drugs. J Korean Orthop Assoc 55: 9-28. doi: 10.4055/jkoa.2020.55.1.9
  16. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352: 1092-1102. doi: 10.1056/NEJMoa050493
  17. Nussmeier NA, Whelton AA, Brown MT, Langford RM, Hoeft A, Parlow JL, Boyce SW, Verburg KM (2005) Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 352: 1081-1091. doi: 10.1056/NEJMoa050330
  18. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352: 1071-1080. doi: 10.1056/NEJMoa050405
  19. Antman EM, DeMets D, Loscalzo J (2005) Cyclooxygenase inhibition and cardiovascular risk. Circulation 112: 759-770. doi: 10.1161/CIRCULATIONAHA.105.568451
  20. Yi W, Wetzstein HY (2010) Biochemical, biological and histological evaluation of some culinary and medicinal herbs grown under greenhouse and field conditions. J Sci Food Agric 90: 1063-1070. doi:10.1002/jsfa.3921
  21. Mengoni ES, Vichera G, Rigano LA, Rodriguez-Puebla ML, Galliano SR, Cafferata EE, Pivetta OH, Moreno S, Vojnov AA (2011) Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia 82: 414-421. doi: 10.1016/j.fitote.2010.11.023
  22. Shishodia S, Majumdar S, Banerjee S, Aggarwal BB (2003) Ursolic Acid Inhibits Nuclear Factor-κB Activation Induced by Carcinogenic Agents through Suppression of IκBα Kinase and p65 Phosphorylation: Correlation with Down-Regulation of Cyclooxygenase 2, Matrix Metalloproteinase 9, and Cyclin D11. Cancer Res 63: 4375-4383
  23. Yu M-H, Choi J-H, Chae I-G, Im H-G, Yang S-A, More K, Lee I-S, Lee J (2013) Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem 136: 1047-1054. doi: 10.1016/j.foodchem.2012.08.085
  24. Segev G, Katz RJ (2004) Selective COX-2 inhibitors and risk of cardiovascular events. Hospital Physician Feb: 39-43