• Title/Summary/Keyword: propylene carbonate

Search Result 97, Processing Time 0.019 seconds

Synthesis and characterization of PPG-based urethane-modified epoxy resin for enhancing impact resistance of epoxy composite resin (에폭시 복합수지의 내충격성을 향상을 위한 PPG 기반 우레탄 변성 에폭시 합성 및 특성 분석)

  • Hwang, Chiwon;Jeon, Jaehee;Ahn, Dowon;Yu, Youngchang;Lee, Wonjoo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.44-52
    • /
    • 2022
  • Epoxy resin has the disadvantage of being easily destroyed by instantaneous impact due to its high crosslinking density despite its high glass transition temperature (Tg) and excellent properties. To compensate for this, in this study, polyol was synthesized by ring opening polymerization of propylene glycol (PPG) diamine, Jeffamine D 2000 and propylene carbonate, and urethane modified epoxy was synthesized using this. The properties of the synthesized urethane modified epoxy were confirmed by FT-IR, H-NMR. To confirm the degree of improvement in impact resistance as an adhesive, a urethane modified epoxy adhesive was prepared by mixing a digylcidyl ether bisphenol A (DGEBA) with curing agent and curing accelerator. Properties test of urethane modified epoxy were shear strength, tensile strength and impact strength. As a result, excellent results were obtained in all test when the ratio of DGEBA : urethane modified epoxy was 8:2.

Effects of Conductive Material on $LiCoO_2$ Cathode for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$ 정극의 도전재료에 따른 특성)

  • Coh Chil Hoon;Moon Seong In;Hyung Yoo Eup;Yun Mun Soo;Park Chun Jun;Yun Duk Hyun;Yun Suong Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 1999
  • The apparent density. self-separation of the electrode composite from current collector in the electrolyte solution and specific resistance of electronic conduction of the electrode composite were examined by the variation of content of conductive material such as graphitic and black carbons in $LiCoO_2$ composite electrode for lithium ion battery. Increasing the content of conductive material, the apparent density of Lico02 composite electrode was decreased and that of $LiCoO_2$ in composite electrode was only rapidly decreased compared to that of composite. $LiCoO_2$ composite electrodes containing more than 4.1 weight percent of super s black as a conductive material were seU-separated by the immersion into 1 mol/I $LiPF_6$ in propylene carbonate and diethyl carbonate (1:1 volume ratio). Specific resistances related to the electronic conduction of composite electrode were decreased by the increasing the content i)f conductive material. Specific resistance of the composite electrode including $2\~3\%w/w$ of super s black as conductive material was similar to that of $12\%w/w$ of Lonza KS6. In the range of this study, super s black as conductive material is better than Lonza KS6 on battery capacity because of apparent density of $LiCoO_2$ in electrode composite including super s black is higher than that of Lonza KS6.

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes (가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석)

  • Seo, Jin-Ah;Koh, Jong-Kwan;Koh, Joo-Hwan;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.

Electrochemical Characteristics of Polyurethane-based Polymer Electrolyte for Lithium Sulfur Battery (리튬 유황전지용 폴리우레탄 고분자 전해질의 전기화학적 특성)

  • Kim, Hyeong-Ju;Shin, Joon-Ho;Kim, Jong-Hwa;Kim, Ki-Won;Ann, Hyo-Jun;Ahn, Ju-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.47-51
    • /
    • 2002
  • Polyurethane was used as matrix for polymer electrolytes with liquid electrolyte consist of organic solvent as ethylene carbonate(EC), propylene carbonate(PC), and tetraethylene glycol dimethylether(TG) and 1M $LiCF_3SO_3$, which has high mechanical strength and porosity. Electrochemical properties fur polyurethane electrolytes with various liquid electrolytes were evaluated. The amount of immersed liquid electrolyte for TG with 1M $LiCF_3SO_3$ was increased to about $750\%$ by weight, and initial discharge capacity and cycle performance was better than others. Ionic conductivity for TG/EC(v/v,1:1) and PC/EC(v/v, 1:1) with 1M $LiCF_3SO_3$ was about $3.15\times10^{-3} S/cm, \;3.18\times10^{-3}S/cm$

Physical Properties of $LiPF_6/PC+EC+DEC$ Electrolyte by the Variation of PC Fraction and Initial Electrochemical Properties of Carbon Anode in the Electrolyte (PC 비율에 따른 $LiPF_6/PC+EC+DEC$ 전해액의 물리적 특성 및 탄소분극과의 초기 전기화학적 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.224-231
    • /
    • 2000
  • The exfoliation of graphite (layer) was progressed due to the irreversible insertion of PC molecules between graphene layers, when propylene carbonate (PC) solvent was used as the organic solvents. The problem could be mitigated by the replacement of PC by ethylene carbonate (EC). But, the freezing point of EC-based electrolyte increased due to the high freezing point of $EC(36.2^{\circ}C)$. Therefore, EC+PC mixed electrolyte is expected as a good organic electrolyte for lithium ion battery. The EC-based organic electrolyte containing PC within pertinent quantity can be expected to have high molar conductivity and reduced exfoliation of graphite layer. The dielectric constant and molar conductivity of $LiPF_6/PC+EC+DEC$ electrolyte was investigated with a variation in the PC content. The electrochemical properties of carbon electrode in the electrolyte were also investigated. Molar conductivity and dielectric constant increased linearly by increasing the PC volume fraction in the electrolyte. The results of charge-discharge test for carbon/electrolyte/Li cell indicated that the initial irreversible specific capacity(IIC) of MCMB-6-28s and MPCF3000 decreased by the addition of $0.83 vol\%$ of PC, but increased with PC content over than $0.83 vol\%$. In the case of MPCF3000 and PCG100 having less than $10 vol\%$ PC, IIC was lower than 50 mAh/g. The discharge specific capacities varied with carbon material, but did not vary with PC content in the electrolyte.

Mechanical Properties and Ionic Conductivities of Plasticized Gel Polymer Electrolyte Based on P(VdF-co-HFP) (가소화된 P(VdF-co-HFP)계 고분자 전해질의 기계적 성질 및 이온전도도)

  • 최종국;김성훈
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.259-267
    • /
    • 2000
  • Gel polymer electrolytes were prepared from poly(vinylidene fluoride-co-hexafluoro propylene)[P(VdF-co-HFP)] that had higher mechanical properties as well as higher dielectric constant ($\varepsilon$=8~13) than other polymeric matrix. Mechanical properties and ionic conductivities have been investigated as a function of blend ratio of electrolyte solution and polymer matrix. Ethylene carbonate (EC)/${\gamma}$-butyrolactone (${\gamma}$-BL) and lithium triflate (LiCF$_3$SO$_3$) were used as solvent and salt, respectively. The mechanical properties such as tensile strength, tensile modulus, compression modulus, and dynamic shear modulus were evaluated. The highest ionic conductivity was 1.09$\times$10$^{-3}$ S/cm for PVH40 containing 28.6 wt% of P(VdF-co-HFP) at $25^{\circ}C$. Tensile strength, tensile modulus and compression modulus were increased with P(VdF-co-HFP) content and abruptly changed between PVH70 and PVH80. Dynamic shear moduli showed a typical gel behavior and changed with shear strain.

  • PDF

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation (BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입)

  • Lee, You-Shin;Jeong, Soon-Ki;Lee, Heon-Young;Kim, Chi-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).

Preparation of Magnetite Nanoparticles Encapsulated with Biodegradable Polymer (PLGA) (생분해성 고분자(PLGA)로 캡슐화한 Magnetite 나노입자의 제조)

  • Lee, Ho-Seok;Choung, Il-Yeop;Song, Ki-Chang;Ahn, Yang-Kyu;Choi, Eun-Chung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.107-110
    • /
    • 2006
  • Magnetite nanoparticles encapsulated with biodegradable polymer [poly(D,L-lactide-co-glycoiide), PLGA] were prepared by an emulsification-diffusion method. To investigate the effect of type of organic solvents on the mean particle sizes of obtained composite particles, different organic solvents [ethyl acetate (EA), propylene carbonate (PC) and acetone (ACE)] were used with a stabilizer [didodecyl dimethyl ammonium bromide (DMAB)]. The particle size of nanoparticles was observed by the dynamic light scattering method. When EA and PC as partially water-soluble solvents were used, small composite nanoparticles below 80nm were obtained, while large composite nanoparticles above 330nm were prepared for ACE as a fully water-soluble solvent.

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation (CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용)

  • Park, Ahrumi;Kim, Seong-Joong;Lee, Pyung Soo;Nam, Seung Eun;Park, You In
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.126-134
    • /
    • 2016
  • To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.